Name:

Show all your work. Do not use book, notes, or scrap paper. Write your answers in the space provided and continue on the reverse if necessary. Explain the meaning of your variables (in English). WARNING: The bonus problems are underrated. Do the ordinary problems first. - This quiz contributes 6% to your course grade.

1. (6 points) Prove: the adjacency matrix of a nonempty graph is indefinite (it has at least one positive and at least one negative eigenvalue).
2. (12 points) Let λ be the largest eigenvalue of the adjacency matrix of the graph G, and let \bar{d} denote the average degree of the graph. Prove: $\lambda \geq \bar{d}$. (Hint: Rayleigh principle: the largest eigenvalue of a symmetric matrix is the maximum of its Rayleigh quotient.)
3. (16 points) Prove: $\Theta(G) \leq \chi(\bar{G})$. Here $\Theta(G)$ denotes the Shannon capacity of the graph G and \bar{G} denotes the complement of G.
4. (10 points) Prove: if the graph G is self-complementary then $\Theta(G) \geq$ \sqrt{n}. (Here n is the number of vertices; the graph G is self-complementary if $G \cong \bar{G}$.)
5. (16 points) Let \mathcal{H} be an r-uniform hypergraph with n vertices and m edges. Prove: $\tau(\mathcal{H}) \leq\lceil(n / r) \ln m\rceil$.
6. (BONUS 6 points) Describe the common (complex) eigenbasis to all $n \times n$ circulant matrices. Recall that each row of a circulant matrix is obtained by a cyclic shift to the right from the preceding row. Example: this is the generic 4×4 circulant matrix:
$\left(\begin{array}{cccc}a_{0} & a_{1} & a_{2} & a_{3} \\ a_{3} & a_{0} & a_{1} & a_{2} \\ a_{2} & a_{3} & a_{0} & a_{1} \\ a_{1} & a_{2} & a_{3} & a_{0}\end{array}\right)$
7. (BONUS 4 points) Let A be a positive definite $n \times n$ symmetric real matrix. Prove: there exists a positive definite real symmetric matrix B such that $A=B^{2}$.
