Combinatorics Math
284/CMSC274/372 Fourth Quiz. May 14, 2010 Instructor: László Babai

Name:
Show all your work. Do not use book, notes, or scrap paper. Write
your answers in the space provided and continue on the reverse if neces-
sary. Explain the meaning of your variables (in English). WARNING:
The bonus problems are underrated. Do the ordinary problems first. – This
quiz contributes 6% to your course grade.

1. (4+8+8 points) Let $A=(a_{ij})$ be random $n\times n$ (0,1)-matrix: each entry is 0 or 1, chosen at random by independent unbiased coin flips. (a) What is the size of the sample space? (b) Calculate the expected value of $\operatorname{Per}(A)$ and (c) $\operatorname{Det}(A)$. Your answers should be very simple formulas (closed form expressions, no summation or dot-dot-dot). Prove your answers to (b) and (c).

2. (8 points) Find the eigenvalues and an eigenbasis of the J matrix $(n \times n)$ all-ones matrix: all entries are 1).

- 3. (3+9+12 points) Let X be a projective plane or order n (meaning: the lines have n+1 points). Let A be the incidence matrix of X (i. e., the (0,1)-matrix of which the rows are the incidence vectors of the lines).
 - (a) State the dimensions of this matrix. (b) Compute the matrix A^TA .
 - (c) Find $|\det(A)|$.

4. (8 points) Recall that an orthonormal representation of a graph G = ([n], E) (according to László Lovász) assigns unit vectors v_1, \ldots, v_n to the vertices such that if i and j are distinct non-adjacent vertices then v_i and v_j are perpendicular. Determine, which graphs have an orthonormal representation in \mathbb{R}^2 . Your answer should be a very simple characterization in familiar terms of graph theory. Do not prove.

5. (BONUS, 6B points) Let p_1, p_2, p_3, p_4 be four points in the Galois plane PG(2,q) in general position (no three on a line). Let r_1, r_2, r_3, r_4 be another four points in general position. A "collineation" is a permutation of the points of the plane that preserves lines. Prove: there exists a collineation that moves p_i to r_i for all i.

6. (BONUS, 6B points) Prove: the automorphism group of the Petersen graph is isomorphic to S_5 .