## Name:

Show all your work. Do not use book, notes, or scrap paper. Write your answers in the space provided and continue on the reverse if necessary. Explain the meaning of your variables (in English). WARNING: The bonus problems are underrated. Do the ordinary problems first. - This quiz contributes $6 \%$ to your course grade.

1. (4+8+8 points) Let $A=\left(a_{i j}\right)$ be random $n \times n(0,1)$-matrix: each entry is 0 or 1 , chosen at random by independent unbiased coin flips. (a) What is the size of the sample space? (b) Calculate the expected value of $\operatorname{Per}(A)$ and (c) $\operatorname{Det}(A)$. Your answers should be very simple formulas (closed form expressions, no summation or dot-dot-dot). Prove your answers to (b) and (c).
2. (8 points) Find the eigenvalues and an eigenbasis of the $J$ matrix ( $n \times n$ all-ones matrix: all entries are 1).
3. (3+9+12 points) Let $X$ be a projective plane or order $n$ (meaning: the lines have $n+1$ points). Let $A$ be the incidence matrix of $X$ (i. e., the $(0,1)$-matrix of which the rows are the incidence vectors of the lines). (a) State the dimensions of this matrix. (b) Compute the matrix $A^{T} A$. (c) Find $|\operatorname{det}(A)|$.
4. (8 points) Recall that an orthonormal reprensentation of a graph $G=$ ( $[n], E$ ) (according to László Lovász) assigns unit vectors $v_{1}, \ldots, v_{n}$ to the vertices such that if $i$ and $j$ are distinct non-adjacent vertices then $v_{i}$ and $v_{j}$ are perpendicular. Determine, which graphs have an orthonormal representation in $\mathbb{R}^{2}$. Your answer should be a very simple characterization in familiar terms of graph theory. Do not prove.
5. (BONUS, 6B points) Let $p_{1}, p_{2}, p_{3}, p_{4}$ be four points in the Galois plane $\operatorname{PG}(2, q)$ in general position (no three on a line). Let $r_{1}, r_{2}, r_{3}, r_{4}$ be another four points in general position. A "collineation" is a permutation of the points of the plane that preserves lines. Prove: there exists a collineation that moves $p_{i}$ to $r_{i}$ for all $i$.
6. (BONUS, 6B points) Prove: the automorphism group of the Petersen graph is isomorphic to $S_{5}$.
