1. (4+8+8 points) Let \(A = (a_{ij}) \) be random \(n \times n \) (0,1)-matrix: each entry is 0 or 1, chosen at random by independent unbiased coin flips.
 (a) What is the size of the sample space?
 (b) Calculate the expected value of \(\text{Per}(A) \) and (c) \(\text{Det}(A) \). Your answers should be very simple formulas (closed form expressions, no summation or dot-dot-dot). Prove your answers to (b) and (c).

2. (8 points) Find the eigenvalues and an eigenbasis of the \(J \) matrix (\(n \times n \) all-ones matrix: all entries are 1).

3. (3+9+12 points) Let \(X \) be a projective plane or order \(n \) (meaning: the lines have \(n + 1 \) points). Let \(A \) be the incidence matrix of \(X \) (i.e., the (0,1)-matrix of which the rows are the incidence vectors of the lines).
 (a) State the dimensions of this matrix.
 (b) Compute the matrix \(A^T A \).
 (c) Find \(|\det(A)| \).
4. (8 points) Recall that an orthonormal representation of a graph $G = ([n], E)$ (according to László Lovász) assigns unit vectors v_1, \ldots, v_n to the vertices such that if i and j are distinct non-adjacent vertices then v_i and v_j are perpendicular. Determine, which graphs have an orthonormal representation in \mathbb{R}^2. Your answer should be a very simple characterization in familiar terms of graph theory. Do not prove.

5. (BONUS, 6B points) Let p_1, p_2, p_3, p_4 be four points in the Galois plane $PG(2, q)$ in general position (no three on a line). Let r_1, r_2, r_3, r_4 be another four points in general position. A “collineation” is a permutation of the points of the plane that preserves lines. Prove: there exists a collineation that moves p_i to r_i for all i.

6. (BONUS, 6B points) Prove: the automorphism group of the Petersen graph is isomorphic to S_5.