Combinatorics Math
284/CMSC274/372 Fifth Quiz. May 26, 2010 Instructor: László Babai

Name:
Show all your work. Do not use book, notes, or scrap paper. Write your answers in the space provided and continue on the reverse if necessary. Explain the meaning of your variables (in English). WARNING: The bonus problems are underrated. Do the ordinary problems first. – This quiz contributes 6% to your course grade.
1. (8 points) Let $S(n)$ denote the number of Steiner Triple Systems (STS) on the point set $[n]$. Let $L(n)$ denote the number of $n \times n$ Latin Squares. Prove: $S(3n) \geq (S(n))^3 L(n)$.
2. (7 points) Define what it means for n random variables X_1, \ldots, X_n to be independent.
3. (5 points) We roll n dice. Let X be the product of the n numbers that come up. Determine $E(X)$. State, do not prove.

4. (2+3+8+12 points) Consider the Erdős-Rényi random graph $G_{n,p}$. This graph has n vertices and each of the $\binom{n}{2}$ pairs is chosen with probability p to be an edge (independently). (a) What is the size of

the sample space for this experiment? (b) Let X denote the number of triangles in $G_{n,p}$. Determine E(X). (State, do not prove.) (c) Determine Var(X). Your answer should be a closed-form expression (no summation/product signs, no dot-dot-dots). Prove your formula. (d) Prove: if p_n is a sequence of numbers, $0 < p_n < 1$, and $\lim_{n\to\infty} np_n = \infty$, then with high probability (w.h.p.), G_{n,p_n} contains a triangle. ("W.h.p." means the probability approaches 1 as $n\to\infty$.) Name the method used.

5. (15 points) Prove: for every n, there exists a graph with n vertices and $\Omega(n^{3/2})$ edges which does not contain a 4-cycle. Estimate the constant implied by the Ω notation for large n. (The bigger, the better.) Prove.

- 6. (BONUS: 8B points) Prove: an STS of order n has at most $n^{\log_2(n+1)}$ automorphisms. (Prove your lemmas; do not use results that were not proven in class.)
- 7. (BONUS: 8B points) Let X_1, \ldots, X_k be pairwise independent non-constant random variables over a probability space of size n. Prove: $k \leq n$.