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1 Preliminaries

Definitions of sets. A = {1,2,3,3} is the set with members 1, 2, and 3. |A| = 3, read as the cardinality or
size of A is 3. V is the “universal quantifier.” Notation:

(Vae A)(3b e B)(b = f(a))

means “for all a in A there exists a unique b in B such that b = f(a).” The number of functions A — B is
|B|!Al = |BA|, define
B ={f|f:A— B}

— stands for negation. The Cartesian product is
A x B=1{(a,b)|ac A, be B},

and |A x B| = |A||B|. A relation is a subset R € A x B, “relation between A and B.” A relation on A is
Rc Ax A

Example: A =R, a <b with a,b € A, have relation <,
R = {(avb) |a < b}a
write aRb.

R is a transitive relation if
(Va,b,c)(if aRb and bRc then aRc).

A reflexive relation has (Va)(aRa), a symmetric relation has (Va, b)(if aRb then bRa). R is an equivalence
relation if it is reflexive, symmetric, and transitive. A partition of a set A is

(Th,....Tn)  TiCAA=TriwvThu....eTy, T, # &,

where w means disjoint union, applies only if 73 N T, = .

Every partition of A defines a unique equivalence relation on A. In fact, this is a 1-to-1 correspondence
(bijection), DO. (8:y=*%do it, but do not hand it in.”)
Qs ¢ = S if ad = be, show this is an equivalence relation on Z x (Z\{0}).
In an equivalence class (partition), a function of two items from the same class should also be in the same
class in the result set of that function.



2 Number Theory

a divides b, written a|b, if (3k)(ak = b). For example, 7|21. a|l < a = %1, 1|a always, a|0 always (take
k = 0). Note that 0|0 by this definition. Ola <= a = 0, (Va)(a|a), (Va)(a| — a). Also, (a —b)|(a® — b?).
Divisibility is
e Reflexive: ala.
e Anti-symmetric (a|b and bla) = a = +b.
e Transitive (&)

Definition: a is congruent to b modulo m, written a = b mod m, if m|(a — b).

(Also called “calendar arithmetic”, in relation to mod 7 congruence) Even integers are congruent mod 2,
odd integers are congruent mod 2, so congruence mod 2 is an equivalence relation.

®: (Vm)(mod m congruence is an equivalence relation)
D: Ifa=2 mod mand b=y mod m, thena+b=z+y modm,a-b=z-y (all mod m).
Definition: Modulo m residue classes are the equivalence classes of the mod m congruence relations.

Theorem 2.1 There are exactly m of them, and we can do arithmetic on the residue classes.

0 1 2 3 4
0/0 0O O O O

S 110 1 2 3 4
Multiplication table modulo 5: 210 2 4 1 3
310 3 1 4 2

410 4 3 2 1

Definition: Div(a) = {b]|b|a} is the set of divisors of a.
Divt(a) = {b> 0|bla} is the set of positive divisors of a.
Div(a,b) = Div(a) n Div(b).

Definition: The greatest common divisor of a and b is the max element of Div(a,b). Note that ged(0,0) is
defined to be zero, by point 2 of the definition below.

Theorem 2.2 (*) (VYa,b)(3d)(Div(a,b) = Div(d)) and is unique up to sign.
Definition: If this holds, then d = gcd(a, b).

b) = maz(Div(a) N

Note that the theorem allows negative numbers, but the ged does not. (Va,b)(ged(a,
iv(d). Equivalently, d

Div(b)) except when a = b = 0. By definition, d is a ged of a and b if Div(a,b) = D
must satisfy the following conditions:

1. d|a and d|b
2. (Ve)(if e|a and e|b then e|d)

Definition: a-Z ={a -z |z € Z}
For example, 3-Z = {0,+3, £6,+9,...}.

Definition: Let A € Z. A is a subgroup if A # 0 and A is closed under subtraction (i.e. (Va,be A)(a—be
A)).



Theorem 2.3 (Division Theorem)
(Va,b #0)(3g,r)(a=bg+rand 0 < r < |b)
Example: a = 100,b = 7. Solve 100 = 7 - g + r, where q is quotient and r is remainder. Get ¢ = 14,r = 2.

A module is a set that is closed under subtraction. Example: (Vd)(dZ is a module)

Theorem 2.4 if A S Z is a module then (3d)(A = dZ)

Proof:
1. 0e Asince A # J = Ja e A such that a —a = 0.
2. —a€ Asince0e A,0—a=—a
3. a,be A = a+be Asince —be A,a——-be A
4. a € A = aZ < A (all multiples of a belong to A) NTS: (Vn € Z)(na € A) Simple induction on n

Theorem 2.5 Let d be the smallest positive number in A. Then A=d-Z.

Proof:

1. A€ d-Z: Need (Vae A)(ae d-Z). ie. dla. So,let a = dg+r,0 < r < d (note that this is positive
because of the initial claim). r = a —dg, a € Aand d € A and d-q € A, so r cannot be positive, so
r=0 = a=dq = da.

2. ADd-Z: Immediate fromde A = {d,d+d,d+d+d,...} and - de A = {—d,—d—d,—d—d—
d,...}.

Definition: c is a linear combination of a and b if (3z,y)(c = ax + by)
Example: 6=18-_ 2 +30- -1
N—— —
x Y
Theorem 2.6 (Ya,b)(3z,y)(ax + by is a ged of a and b)
Notation: VA, B € Z

1. A+ B={a+blac A,be B}

2. A—B={a—-blae Abe B}

3. AB={a€ Ala¢ B}

So, all linear combinations of a and b are a-Z+b-7Z. Observation: a-Z+b-7Z is a module. i.e. the difference

of two linear combinations of a and b, (ax + by) — (au + bv) = a(x — u) + b(y — v) so (3d)(aZ + bZ = dZ) so
d is a linear combination of a,b because d € dZ = aZ + bZ.

Claim: d is the ged of a and b.
Proof:

1. d|a because a =a-1+0-0
2. d|b similarly

3. let e|a and e|b. Claim: e|d. d € aZ +bZ => (3x,y)(d = ax +by). So, dla => elax and d|b = e|by
together imply alaz + by = d

D Prove if both d and d’ satisfy the following then d = +d’:
1. d|a and d|b



2. (Ve)(if e|a and e|b then e|d)
Definition: A prime is a positive integer p > 2 where Div*(p) = {1,p}
Definition: r has the prime property if (Ya,b)(if r|ab then r|a or r|b and r # +1).
Example: 6|3 -4 so six does not have the prime property.
Note: 0 has the prime property. Also: if ¢ = 2 and a is not prime, then a does not have the prime property.
Theorem 2.7 if p = 2 is a prime, then it has the prime property.

®: The uniqueness of prime factorization (the fundamental theorem of arithmetic) is an immediate conse-
quence.

Proof: Lemma: ged(ak,bk) = k - ged(a,b). Let d = ged(a,b) = ax + by. Need a kd = ged(ak, bk). Know
that kd|ak and kd|bk, so d|a and d|b. If e|ak and e|bk then e|dk because d = ax + by, dk = ak - x + bk - y
since e| both right terms.

Supposing p > 2, p prime, pla - b, we need pla or plb. WLOG,! assume p t a, and prove p|b. Then
ged(a - b,p-b) = b ged(a,p) by lemma. But that implies gcd(a,p) = 1 because Divt(p) = {1,p}. Since
plged(ab, pb), plb.

Q: Learn Euclid’s Algorithm.

Proposition 2.8 alb and bla < a = +b.

Proof: < /. So for =
alb: 3k, b = ak
bla : 31, ab = bl

a = bl = akl.
a—akl=0,a=0 = b=ak=a—0=04/,
a(1—K)=0,1=k = k=+1,b= +ay/.

As a consequence, the ged is unique up to sign.

Proof: Suppose d and d’ are both ged’s of @ and b. Then

1. dla, d|b.

2. d is a multiple of all common divisors, including d’: d'|d. Analogously, d|d = d = +d'.
Definition: a and b are relatively prime if ged(a,b) = 1.

Definition: a = b mod m means m|a — b

Prove that mod is reflexive by a = a mod m via (VYz)(z|0). Prove symmetric by a =b mod m = b=
a mod m via (Vz)(xz|c = x| — ¢). Transitive by a =b mod m and b = ¢ mod m = a =c¢ mod m via
m|z and mly = m|z+ywithz=a—-bandy=>b—c.
Theorem 2.9 Ifa =b mod m then ged(a,m) = ged(b, m).

— —

d d’

IWLOG="without loss of generality”. Used in a proof when a simplifying assumption is made such that both (a) the
proof using the assumption is significantly shorter than the full proof (b) completing the proof without the assumption is
straightforward. In the current proof, we know that p|ab and are trying to prove that p|a or p|b. In the full proof, we would
consider three cases: (1) pla and p|b (2) pta (3) ptb. In case 1 the claim is trivially true, and if we can prove case 2, the proof
of case 3 will be identical. Thus WLOG, we need only consider case 2. (MS)



Proof: m|a —b.
Div(d) = Div(a, m) = Div(b,m) = Div(d’),
so need to prove:
(Vx)(z € Div(a, m) & re Div(b,m))
(z|a and z|m) PRI (z|b and z|m)

=, need to prove: z|b and xz|m. Assume z|a and x|m, need to prove z|b. Assume a =b (m), z|a, z|m D.C.
x|b.

Proof: mla—b 3y :a—b=my, then b =a —my, put in z’s, = z|a — my+/. < done the same way.

A residue class mod m = {x|z = k}, number of residue classes mod m is m. They are equivalence classes.
Corollary 2.10 If L is a residue class mod m and (3z € L)(ged(x,m) = 1) then (Yx € L)(ged(x,m) = 1)
Proof: Thm 2.9

Definition: L is a reduced residue class mod m if L is a residue class mod m and its members are relatively
prime to m. Denote via [a],, for the residue class @ mod m. The number of reduced residue classes mod m
is called ¢(m), called Euler’s phi function.

So ¢(m) is the # of integers k in the interval a < k < m such that ged(k,m) = 1. Have ¢(1) =1, ¢(2) =1,

$(3) =2, ¢(4) =2, ¢(5) = 4, ¢( ) = 2, ete.
If p is a prime, then ¢(p) = p — 1.

R: ged(a,p?) #1 < pla

get that ¢(p?) = p? —p. ¢(p®) = p® — p?, in general have
o(p") =p* —p"t =pF(1 - )

R: If ged(a,b) = 1 then ¢(ab) = ¢(a)p(b), called “¢ is multiplicative.” (Not totally multiplicative, just if
ged has this property.)

ESY Z o(d (but notes slightly more difficult than usual ESY s)

D 1o(d) = ¢(1) + ¢(2) + ¢(3) + Dl e(d) = ¢(1) + ¢(7) =T,

d|6 d|7

where d|6 means summation over the positive divisors, etc.
Corollary 2.11 Ifn = plfl - -pgs and the p; are distinct primes, then
S
=[Jor) =n]]a-
i=1 pln

p prime

Example: ¢(90) = ¢(2-
2(1—3)9(1 — 3)5(1 - %)



1
Theorem 2.12 Z — =
p
p

D Prove that inf,, ) _ 0. Note: limy—>int ¢() _ 1 hecause % =1-

n
n p
Claim: z? =z mod 2.
?
Proof: 2 | 22 — 2 = z(x — 1) = one of them even.

Claim: z3 =z mod 3

Proof: 32 —x =x(2®> - 1) =a(x - 1)(z+1) = (z — Da(z + 1)

Claim: 2° =2 mod 5

Proof: 5% —z = z(z* — 1) = 2(2®> + 1)(2? — 1) = (z — Va(x + 1)(2? + 1), instead if 22 + 1 we would wish
2?2 —4 = (x —2)(z +2), but now 22 + 1 = 22 — 4 mod 5.

®: Prove in a similar manner: 27 = z (7), 2'' = 2 (11).

Theorem 2.13 (Fermat’s Little Theorem) x? = x mod p, p prime.>

(Whenever p written without comment, assume is prime.) Call theorem stated this way (1). An equivalent
statement, (2), is
(Vz)(Vp prime)(if ged(z, p) = 1 then 2P~! = 1 mod p)

Proof:

(2) = (1): If ged(z,p) = 1, then (2) = 2P~1 =1 (p), 2P =z (p). If ged(w, p) # 1, i.e. plz, then
e=0(p), 2? =0 (p).

(1) = (2): We know 2P =z (p) = divide both sides by x: 2P~ = 1 (p), because we are assuming
ged(z,p) = 1. 2P =z (p), plaP —x = (2Pt — 1), plr = p|aP~! — 1, by the prime product property.

D: If az = ay mod m and ged(a,m) = 1 then z =y mod m.
D If az = ay mod am then z =y mod m.

Theorem 2.14 (Euler-Fermat) If gcd(z,m) = 1 then 2™ =1 mod m.

(Note: lim 40)) =1)

poL P
Proof: Let ay,...,ag,) be a set of representatives of all reduced residue classes.
Claim: zay,...,Tay(,) is again a set of representatives of the reduced residue classes.

Proof: (1) (Vi)(ged(za;,m) = 1), proof by ged(z,m) = 1 and ged(a;, m) = 1.

(2) i # j = wa; # xa; mod m. Contrapositive is: ra; = xa; mod m = (by Nex.) a; = a; mod m
= i =].

=

#(m) @( m
a; = (za;) = z?m) H a; modm
i=1

2

,_.
Il
—

1= 7

~—
A

get 2™ A = A mod m, gcd(A,m) =1 = by Vex., 2™ =1 mod m

24So for whatever reason, on one sunny afternoon Little Fermat decided to look at the following...”



A sequence ag, a1, . .. is periodic with period ¢ if (Vn)(a,4+ = an,). t is a period, the period is the smallest
positive period. Equivalent definition: ¢ is a period if (Vk,1), if k =1 (mod t) then a; = q;.

®: The period is the ged of all periods.
®: Prove that if a/b a fraction, 0 < a < b, ged(b,10) = 1, = a/b is a periodic decimal.

m) =1 mod m

a® = 1,a,a?,... mod m, assume gcd(a,m) = 1. ¢(m) is a period of this sequence. a®
(Euler-Fermat).

If k,1 >0, k=1 mod ¢(m) then a* = a’ mod m.

If p prime, k,p = 0, k=1 mod p — 1, then a* = a! mod p. In general, the period divides ¢(m).

The period of the sequence {a* mod m} is called the order of a mod m. (Assume gcd(a,m) = 1.)

In other words, the order of @ mod m, ord,,(a), is the smallest k£ > 0 such that * =1 mod m. [Euler-
Fermat tells us ord,,(a)|¢(m)].

Ex: ords(2) =4, ord7(2) = 3.

l

Definition: «a is a primitive root mod p if ord,(a) = p — 1.
Theorem 2.15 For any prime p, 3 a primitive root mod p

Ex: 2 is primitive root mod 5, 3 is primitive root mod 7. This theorem is non-trivial, can find online, etc.
10 =3 mod 7 = 10 primitive root mod 7.
1/7=0.142857, periodic. Let A = 142,857, then 7A = 000,000. Puzzle: 142,857 is the only 6-digit
number A such that A,2A4,...,6A all have the same digits.

g % is in decimal periodic; period is ord,(10)
®: 10 is a primitive root mod 17. (Note means 1/17=0.BBB.., where B has 16 digits.

Q: 1. Definition of ged of any number of integers.
2. Prove gcd exists, is repr. as a linear combination.

3. ged(a, b, ¢) = ged(a, ged(b, ¢)).

2.1 Linear congruences
Claim: az =b mod m is solvable <= gcd(a, m)lb.

Proof: 1. Necessity, i.e. (3z)(...) = ged.... Obs: If a = b mod m and r|m then a =b mod r. Pf:
transitivity of divisibilities, ®.

Proof: d = ged(a,m), ax =b(m) => ax=b (d),0=b (d), sod|b +/.

2. Sufficiency: ged... = (3x)(...). d := ged(a.m), assumption d|b. Iz, yo, d = axg + myg, axo = d
mod m. abzg = %d =b (mod m), with bz¢ = z. /

Case b = 1: az = 1 (mod m), = the multiplicative inverse of @ mod m (a=! mod m). It exists <=
ged(a,m) = 1.

Simultaneous congruences:

r=18) =>z=1(2) (1)
x=5(7) (2)
x=4(6) => z =4(2) (3)
Not solvable, since (1) and (3) contradict each other. In general,
z = a(m) (4)
z = b(n) (5)

contradict each other if @ # b mod ged(m,n).



Corollary 2.16 If the system (4, 5) is solvable then a = b mod ged(m,n) so this is a necessary condition
of solvability.

Q: Tt is also sufficient.
Corollary 2.17 If gcd(m,n) =1 then (4, 5) is always solvable.
Theorem 2.18 (Chinese Remainder Theorem) Consider the system

r = ai(m) (6)

If the m; are pairwise relatively prime, then a solution exists, and solution is unique modulo N := myq - - - my.

Example: System

x = 2(5)
x = 1(6)
x=3(7)

by CRT 3z satisfying these. Take 42, 35, 30, x = 42A + 35B + 30C, mod 5 gives 42a = 2, mod 6 gives
35B =1, mod 7 gives 30C = 3. A exists because gcd(4 5) = 1, etc. Literature for the CRT is Wikipedia,
very good description of theorem and proof.

Theorem 2.19 For system (6-7), if 3x it is unique modulo lem(my,...,my) =: L, where lem stands for
“least common multiple”

Proof: Suppose

y = ai(m)

y = ag(my)
Need to prove: z =y mod L, i.e. Ljlz —y
®: Define lem in full analogy with definition of ged, prove 3.
Proof: L|b < (Vi)(m;|b) by definition of lem. +/
Theorem 2.20 (Euclid) 3 infinitely many primes.

Proof: (Euclid) Assume by contradiction that py,...,px are all the primes (p; = 2). Let N = p1ps - - pi.
Then N+1>2 = Jprime p|N+1 = (Fi)(p=p;, N=—-1mod p, N =0 mod p;, so 1 =0 mod p,
contradiction.

Example: Find z : 2% = 1(187) but = # +1(187). Via CRT:

x = 1(17)
x=-—1(11)
Solution in the form: z = A+ 17 + B = 11.
Bx11=1(17) = —3(17)
Ax17=-1(11) 6A=—1(11)
124 = —2(11)

= —2(11)

So, x = =2 %17+ —3 % 11 and z = —67. Check: (67)%> = 1(187). That’s —67 = 1(17) and —67 = —1(11) so
it’s good!



3 Counting

An n-set is a set of n elements, [n] = {1,...,n}. The #k-subset of an n-set is (Z) = k,(+lk),

“n choose k” In poker you get five cards, so (552) = W. The bottom divides the sequences into
equivalence classes based on the “same cards”. Remember to make life easy when you can: (g) = WLS), =
n(n—1)(n—2)

31 :

A permutation of a set A is an A — A bijection. The # of permutations of an n-set is n!. Will be taking
00 =1.

L 3 lim 2¥ = mostly 1.
x,y—0

Pascal’s triangle, Pascal’s identity is

n+1\ (n n n
E+1)  \k kE+1
Combinatorial proof: (Z) is #(k + 1) subsets containing special element, (kzl) is #(k + 1)-subsets avoiding

special elements... and get it from there, then gives binomial theorem.
READ: binomial theorem: (z +y)" = Y, (})=" *y*.

3.1 Asymptotic notation

Definition: For a sequence {a;}, linr; an, = A means (Ve > 0)(AN)(Yn > N)(|la, — A| < €). Interpret as
n—o0

“for all sufficiently large n, a,, is within a threshold distance of A.” For an interval of size €, as N gets large
the difference between a,, and A gets smaller.

a
Definition: a, ~ b, are asymptotically equal if lim — =1
n—x0

False version is just the negation of all quantifiers OR no limit exists.

Examples:
1. a, = 3n?+5n+100 and b,, = 3n? are asymptotically equal. This is because %’%m =1+2%+3%9 ~
1.

2. Stirling’s formula:(memorize) n! ~ (2)"v27n
3. w(x) = # primes < z. So w(4) = 2, w(10) = 4, 7(100) = 25, etc. One of the biggest theorems in math:

Theorem 3.1 (Prime Number Theorem)

T

Proved in 1896 by Jacque Hadamard and Pierre de la Vallée Poussin.?

When is a,, ~ b,? Let
by #0
Cpn=Aq#*:a, #0,b, =0
l:a,=0b,=0
Say a, ~ by if lim¢, = 1. Under this definition, ~ is reflexive (proved), symmetric (proved), and transitive

().

Definition: f(r) = a,2" + a,_12" "1 + -+ + ag is a polynomial of degree n if a,, # 0.

3=Challenge
4“Hadamard was French, and that means you put letters at the beginning and end which aren’t pronounced, to confuse the
enemy.”



In(1 + z)

Note that f(z) ~ apa™. Also, lirr%) . = 1.
Vi y1+L-1~7
Example: (3) = 7"("713)!(”72) ~ %3

¥: a, ~b,>1 = Ina, ~Inb,? (Answer is “almost”.. find condition.)

Pascal’s triangle, define floor | | and ceiling [ ], from Pascal’s triangle (lZJ) = ([Z]). Have
2 2

1+1)"= <g) +<T1L>++<Z> =27,

= (}) <2" Vk. So 2" > (lzJ) > %, < (ng) < 2. This all works because it relies on the rule that

the biggest must be bigger than the average.
R (M) ~ et e =7 irling’
: ([%J) C oy €= Use Stirling’s formula..
Claim: O,, is odd subsets, E,, even subsets, then |O,| = |E,|, if n > 1.

Proof: 0" = (1—-1)" = (3) = [(5) + (5) +--.1=1[(}) + (5) +...]. Combinatorial proof, use a bijection:

[n] ={1,...,n}, for AC [n], odd = A = [n]\A. For n odd, take one element out, etc..

Oz, = Ogp—1 + Eop 1
Es, = Eap—1 4+ Ogp—1

Make a function f which toggles whether the element is in your subset of not:

Iy f(A)=A\{n}:ne A
lfA)=Au{n}:n¢ A

f is a bijection between even and odd sets (for n > 0).

5,
Not = on=1

=0

& Consider Z (Zﬂ) =? For what n is it 27 2?

k=0
L5]
271
% Show th S e )
& Show that ,§O<3k 3 <
Have (g) = %)(‘%2), even for complex numbers. Define (Z) =0 for k£ > n, then

(I+2)" =1+ (ZL)H (Z)z2+---+ <Z>z"+ (nZJz"“ :?}O (Z)z‘“

and Newton’s Binomial Theorem is

10



For all complex numbers z, assuming |z| < 1. Have

e i <_]€1)(—Z)k= izk

1=z k=0 k=0
(1)
where 1\ (~1)(=2)- (k)
( k ) N k! = (1"

This is how many way to pick k x’s, [ y’s, and m z’s. Also, don’t forget that 1+t =1—t+t2 -3+,
HW: show

3.2 Generating functions

Power series are the generating functions of the sequence a,,:

D
S
3
=
3

flz) =

3
Il
o

Il
D

i

S

3

+

(=l
SN

f(x) +g(x)

L3
ol
=

(where ¢, = Z arbn—r)

=
&
*
<
—~
8
~—
|
s
o
3
&
3

n=0
o8}
fl(x) = Z apnz™!
n=1
8]
Look at fib-gen, where the coefficients are the Fibonacci numbers. So, f(z Z z™. Reduce, pulling

out factors and simplifying;:

v’}

f($)=F0+F1.’L‘+ Z(anl+an2)xn

n=2
flx )_ﬂf‘i‘ZFn 1z" +ZFn oz
= n=2

f(z) =ﬂ?+$*f($)+$ * f (@)

x
f(.f) - 1—gr— (E2

Theorem 3.2 (Trinomial)
(x+y+2)"= <k ln )xkylzm
k,l,m=0,k+l+m—n »

n _ _n!
where (k,l,m) = Tltml-

For (k l"m), think of n! total ways to distribute the cards, divided by the ways that k!, I!, m! could have been

distributed. Note that &k +1+ m = n.

11



Theorem 3.3 (Multinomial)

(14 +ap)" = Z Tt
eyt 20, b1 oo tg =
15 k 1 =N Hti!
i=1
Claim the number of terms in the k-nomial theorem is (”Zle) Lots of reasoning here on why this would
be so: looking for number of solutions to the equation z1 + -+ + x = n, for x; > 0, x; € Z. Easier question
is same for y; + -+ + yx = n, y; = 1, by looking at putting £ — 1 dividers in n places, get (Z:}) Now, let

=i+ 1L,y =21, Nyi=n+koget (T v

Definition: a, ~ b, if lim dn _ 1, replace Y o by L.

n—o n

Definition: a, = o(b,), if lim ~* =0, abd 2 := 0.

n—%L Oy

In this notation, a,, = o(1) means lim a, = 0.
n—ao

Obs: ap ~ b, <= a, =b,(1+0(1)), meaning Ic,, an = by (1 + ¢,,), where ¢, = o(1).

Note that a,, = o(cn) b = 0o(cn) = anb, = o(cy), i.e. ap = bpa/n, ¢, =n.

Also, ap, = o(by),an = 0o(cy) = a, = o(by, +¢;,), but want this to be true, it is under condition by, ¢, > 0
(or both negative).

X Is this statement T or F?

Definition: a, = O(b,) if (3C)(for all sufficiently large n), i.e. (Ing)(¥n = ng). This is equivalent to
|an| < Clby| for some C.) Say “the order of magnitude of a,, is < the order of magnitude of b,.”
2_
o “gss = 0(n)
If a,, = o(by), then a,, = O(b,)
Definition: a,, = Q(b,) if b, = O(ay).

Definition: a,, = ©(b,) if a,, = O(by,) and a,, = Q(by,), i.e. (3C,c > 0)(Ing)(Vn = no)(c|byn| < |an| < Clbnl),
say “a, and b,, have the same order of magnitude.” We have to have “for n sufficiently large” here because
an = 0,b, # 0 could happen at a finite number of places or “within constant factors of each other.”

Definition: a,, polynomially bounded if (3C)(a, = O(n%).
Definition: a,, grows exponentially if (3¢ > 0)(a, = Q(e™"))
Theorem 3.4 If a,, is polynomially bounded and b,, grows exponentially then a,, = o(b,).

In fact, 2 grows exponentially (assuming a,, # 0).
1
Theorem 3.5 Inx = o(z), i.e. lim =22 .
oL T

Proof: L’Hoépital’s rule, get
!
(Inz) _ 1/x _1 S0
x! 1 z
In fact Ve > 0, Inx = o(z¢), do by re-defining x, same kind of proof w/ LHR.
Now, how to prove that (Inz)!% = o(z)? Say

(

Inx jioo (In z)100

100, /zx z

— 0

Theorem 3.6 (Vc)(c > 0)(Inx = o(z°))
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3.3 Polynomial vs. exponential growth
Theorem 3.7 VO, C > 0, n© = o(e""), ex: n'% = 0(6100\/5)

Proof: Inx =19 \/n, (Inx)190090 = o(z) v

R Ve, d > 0, (1 + c)”d grows exponentially. Meaning: 3f,¢ > 0 such that e’ < 1+ c)"d < e’ for all
sufficiently large n

Q notation read “a,, grows at least exponentially.” But O notation read a,, “is” exponential, even though
behaves more like an inequality.

D: Oisan equivalence relation on sequences.

Theorem 3.8 If L = lim dn exists, then

n—*L Oy

1. If L =1 then a, ~ b,

2. If L =0 then a, = o(by)

3. If L = o0 then b, = o(ay,)

4. If L #0, # too, then a, = O(by,)

Proof:

Theorem 3.9 Suppose a,, = 1. a, is polynomially bounded <= lna, = O(Inn).

Proof: &
Inn = O(log, n) because lcl’ﬁ—iln = 5. If m(x) = number of primes < z, then 7(z) = o(z), get 2% = o(:L),
because PNT gives 7(z) ~ = > —%7

Theorem 3.10 If lim I emists 1= L, have (21:‘) = 0(4"™), because (277) = @(%) (using Stirling’s formula)

n—o% Oy

Proof: &
Theorem 3.11 If a, = ©(b,) and a,,b, — o, then lna, ~ Inb,

Suggests writing o with an “ear” to distinguish from O. o and O are notation from Landau ~ 1900, 2, ©
from Don Knuth. Notation not used here is w(b,,) = a, if b, = o(a,).

4 Finite Probability Spaces

Sample space = set of all possible outcomes of the experiment. Each outcome: elementary event. Usually
call Q the sample space, A an event, A € Q.

Definition: 1. Non-empty finite set €2, the sample space.
2. A probability distribution P over 2: P :  — R. such that

(a) (Vz e Q)(P(z) > 0)
(b) > P(x)=1

e
Elements of Q2 are “elementary events”, then (2, P) is a finite probability space.
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If (Vo e Q)(P(z) = ﬁ) then the space is uniform distribution.

An event is A< Q, P(A) = Z P(z). In particular, P(&) = 0, P(Q2) = 1.
zEA

k
R: If Ay,..., A, € Q, then P(A; U... U Ag) < Z P(A;), union bound.
i=1

Equality holds <= the A; are pairwise disjoint, i.e. they are mutually exclusive.

®: P(AuUB) 4+ P(An B) = P(A) + P(B) (modular equation)

4.1 Conditional probability
A, BcQ, B# &, then

pa|B) < 240D (ﬁ(;)B )

is the probability of A conditional on B.

Definition: A, B < Q are independent if P(A n B) = P(A)P(B).

Definition: The trivial events are &, Q.

®: If A is trivial then (VB)(A, B are independent).

Consequence: if B # & then A, B are independent <= P(A) = P(A|B).

Theorem 4.1 (Complete probability) For a partition Q = Byw---w By, B; # &, w is “disjoint union”,
P(A) = ZP(A|Bi)P(Bi)

Proof: Have P(A B,
PUALB)P(B) = D5 2 P(B) = Pl B,

N=Bjw---wB, A=(AnB;))w---w (AN By).

Proof of causes: Say we know P(S|B) = 90%, P(S) = 5%, P(B) = 2%.
Q: What is P(B|S)?

(BnS) P(B)P(S|B) 0.02-09 2 3
P(S) ~ P 005 5 09=036,

PB|S) =~

so 36%. Note that this used P(B n S) = P(B) = P(S | B).

Definition: A, B positively correlated if P(A n B) > P(A)P(B), negatively correlated if P(A n B) <
P(A)P(B).

Example: Roll a die, A event it’s prime, B event it’s odd. Then P(A) =
positively correlated.

,P(B)=s,P(AnB) =% —

1 1
2 2

®: For what n are the following events independent: A : 2|z, B : 3|z. Yes if 6|n. Pick a number 2 from
{1,....n}. Forn=8, P(A) =, P(B) = 1, P(An B) = t = P(A)P(B).

2 ~ 1

14



If P is uniform, then
- %P6 = g
= e
L
7]

ie. “# of good cases” /“# of all cases”.

Experiment: n coin flips, get an outcome such as HTTHTTT, |Q| = 2™.

Deal 5 cards from standard deck of 52 cards, a “poker hand”, then || = (552).

For events A, B,C € ), P(An B n C) = P(A)P(B)P(C) plus pairwise independent. Without this last
bit, can have A = B non-trivial and C' = &, holds but not pairwise independent.

X If A, B, C independent, then

e A B u C also independent,
e A B n C also independent,
e A, B\C also independent.

Means A, B, C' independent (where C' = Q\C).

Definition: A;,..., Ax € Q are independent if VI < [k],
P((4) =] P49
el el

2% conditions. Turns out 2* conditions actually 2¥ —k—1. (Need only for |I| > 2, it is automatically satisfied
for |T] < 1.)
If |I| = 1, singleton, I = {i}, ﬂAj = A;.

jel
If I = @, | [anything = 1. [] 4; = Q.
e i€
D Experiment: n coin flips. Space: uniform. A;=%“ith coin comes up heads” =— A;,...,A, are

independent, P(4;) = 1.

4.2 Random variables
Function X : Q2 — R. The expected value of X is
X) =) X(z)P(x
TEW

the weighted average of outcomes. Over a uniform space,

mm=2xu@zgp,

the simple average.

D min X < B(X) < max(X)
R: If X,V : Q- R, then B(X +Y) = E(X) + E(Y).

Have E(cX) = cE(X) for ce R, so

15



Theorem 4.2 (Linearity of expectation) Fora; €R, X;: Q —> R,

k k
=1 i=1
linear comb.

or ZfX =c1Y1 +coYs + -+ then E(X) = ClE(Yl) + CQE(YQ) + e

Theorem 4.3

E(z) = Z rP(X =r),

reR

but r really € range(X), because if not the probability is 0.
Why? “X =7 is an event, namely {z € Q| X(z) = r} = X~ 1(r). Anyhow, proof is &.

Definition: The indicator variable of event A is

94 () lifzeA
) =
4 Oifa¢ A

If n = ||, the # events = 2", #(0,1)-random variables (indicator variables) = 2". Every random variable
that takes values 0, 1 is the indicator variable of an event: A =Y "1(1), Y =94,

E(Wa)=1-P(Wa)=1)40-P(W9a =0)=P(A)

This is very important: E(d4) = P(A), i.e. the event “04 = 17 is A.
For X : # heads in n coin flips,

EX)=YrP(X=r)= 3 r(;) _n
r=0

r=0n

the last step by intuition about coin flips. (Notation: (X = r) means {a|X(a) = r}). Can prove this intuition
by knowing (1) = n("fl) (D), sum above

r—1
1 & (n-1 ol
= n— =N =
2n — \7" — 1 n

SE

gy
s
I
[
=
=
I
[
sy
=
I
SE

so indicator functions nicer.

5 Graph Theory

A graph is a set of vertices and edges, for the moment unordered pairs of vertices, called an undirected graph.
Relation on V is adjacency: v,w € V are adjacent if {v,w} € E. The degree of vertex = is # of vertices
adjacent to . G is regular of degree k if every vertex has degree k. For k = 1 it’s pairs of points; for k = 2
it’s a disjoint union of cycles, and for k = 3 it’s already an infinite set of graphs (trivalent).

Can do some work, convince yourself that:
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Theorem 5.1 If G is reqular of degree 3, then |V| is even.

Proof:
Z deg(z) = 2m,

zeV

where m will always stand for |E|.

Call the fact that Z deg(xz) = 2m the “handshake theorem.” Call K, the complete graph on n vertices,
zeV
m = (3). K, the empty graph, m = 0. For every graph, 0 <m < (}).
The complement of G = (V,E) is G = (V, E), where {z,y} € E < z,yeV,z #y, and {z,y} ¢ E.
Bipartite graph: vertices can be colored red and blue such that adjacent vertices never have the same
color. Ex: 6 vertices in a hexagon, put in 3 diagonals intersecting at center. A bipartite graph cannot contain

a cycle of length 3, i.e. K3 = (3. Cycle C,, is bipartite <= n is even. So, generalization:
Theorem 5.2 G is bipartite < G contains no odd cycles.

We’ve done “only if” step. Walk of length n in a graph: vg—v;—...—wv, such that {v;_1,v;} € E,i=1,...,n.
A path in F is a walk without repeated vertices. Write the number of walks of length & as 0, K, (in the
complete graph). If G is regular of degree d, the # walks of length k is nd*. The number of paths of length
kisnn—1)---(n—k)/2.

The complete bipartite graph K}, looks like a line of k red next to a line of [ blue, edge between every
red and blue. n =k + 1, m = kl.

Definition: An isomorphism between G = (V, E) and H = (W, F') is a bijection f : V' — W which preserves
adjacency: (Yvi,v2 € V), v1 ~g vz <= f(v1) ~u f(v2).

Definition: G and H are isomorphic if 3f : G — H an isomorphism.

It’s an open problem whether you can prove non-isomorphism in polynomial time. A graph that is often
used as a counterexample is Petersen’s graph:

Length of shortest cycle is girth, diameter is max, yev dist(z,y), distance (z,y) is length of shortest path
from x to y (oo if 1 such path). Petersen’s graph has girth 5, diameter 2, regular of degree 3.

®: If G has girth 5 and is regular of degree r then n > r2? + 1.
D If G has diam=2 and is regular of deg=r then n < r2 + 1.
Gives a funky graph (get fm someone),

®: This is isomorphic to Petersen’s graph.

17



Definition: y € V is accessible from x € V if 3z < y path.

T acc ¥y, r acc y == Yy acc x, transitive:

Q: Prove: if 3z. ..y walk then 3z. ..y path.

Definition: The equivalence classes of “accessibility” are the connected components of G.
Definition: G is connected if Yz, y, x acc y, i.e. there is just 1 connected component

Definition: G is a tree if G is connected and has no cycles.

Example: P,, line of n nodes, m =n — 1.

Example: star,,, one node in middle, n — 1 around it in circle, connected to center node. m =n — 1.

Proof: By induction on n. Wrong proof: n — 1 vertices, just add one more. But:
Lemma 5.3 (1) Ewvery tree has a vertex of degree 1 (n >2) ()

LH.: true for n — 1 vertices, D.C. ”. Let = be a vertex of degree 1 in tree T" with n vertices. Remove it: get
graph T, has n — 1 vertices, T has no cycles, 1" is connected.

Lemma 5.4 (2) If G is connected, deg(z) = 1, then G\x is connected. (&)

Say a legal coloring is f : V — {colors} such that (Vz,y € V)(x ~y = f(z) # f(y)). G is k-colorable if
3 a legal coloring with < & colors. The chromatic number x(G) := min{k |G is k — colorable}. A graph is
bipartite <= 2-colorable. x(G) =1 < G =K, x(K,) =n, Do x(G) =n < G=K,,.

Theorem 5.5 (Kuratowski’s Theorem) G is planar <= G has no K5 or Ks 3.
Definition: A clique is a complete subgraph. w(G) is the size of the largest clique. x(G) = w(G).

Definition: The independence number is a(G) and is the size of the largest independent set in a graph. A

set of vertices is a subset A € G such that no two vertices are adjacent. Also, a(G) = w(G).
Definition: A plane graph is a plane drawing of a graph without any intersections.

Definition: A multigraph is a graph that also allows loops (self-edges) and parallel edges (multiple edges
between a pair of vertices).

Note that the handshake lemma remains valid (2m = Z deg(n)).

Definition: Regions are connected components of the complement of the plane graph.
Theorem 5.6 (Dual handshake) number of sides of a region (r) = 2 * number of edges (m)

The dual plane graph is the set of connected points between regions, going over each of the edges. Note
that duals can introduce multigraphs even from a simple graph. Trees have one region. Their dual will be a
vertex with n — 1 loops (edges).

Theorem 5.7 (Euler’s Formula) For a connected plane graph, n —m +r = 2

Can prove by induction on n 4+ m, but need to use the Jordan Curve Theorem, which is too advanced for
this class.
Count the number N of trees on n vertices, drawing pictures: N(2) =1, N(3) = 3, N(4) = 16. Count

paths of length &k in K,,:
nn—1)(n-2)---(n—k+1)

Shows N(5) = 125. These all suggest one formula:
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Theorem 5.8 (Cayley’s Formula) The number of spanning trees of K, is n" 2.

Proof: Bijective: Encode every spanning tree by a string of length n —2 over an alphabet of size n. “Priufer
code”: MN, Wiki.

Another proof: figure here, prescribe: vertex i has degree d; > 1, and Z d; = 2n — 2, by the handshake

theorem. Then =
Theorem 5.9 Suppose di,...,d, satisfy these conditions, then then the number of trees with these degrees
on vertex set [n] = {1,...,n} is
(n—2)!
n
[ Jd:—1)
i=1

Proof: Proof: by induction.
Lemma 5.10 If dy,...,d, satisfy the constraints, then 3i, d; = 1.

Proof: Suppose false: Vi, d; > 2 = Y. d; = (2n — 2) > 2n, =<. Look at vertex n, then

n-1 (n—3)! " (n—2)(n —3)!
N(dl,...,dn)=i=§¢1N(d1, = 7dn71)=m(;(di_l))=W=\/
di—1

Then, proof of Cayley’s formula:

—-2)!
(TL ) ':(14_____’_1)77,72:nnf27

#sp. trees of K, = H N(dy,...,dn) = Z m

di>1,Y ) d;=2n—2 di>1,Y ) d;=2n—2

last bit by the multinomial theorem. Note: d(d; — 1) =Y d; —n=(2n—2) —n=n— 2.
Count n digit integers of which (1) all digits are odd, (2) all odd digits occur.
(1): 5™

(1)+(2): 5" —=5-4" 4 (3) - 3" — (5)2" + (})1"
This is a special case of:

5.1 Inclusion-Exclusion

Universe (2, subsets Ay, ..., Ay, given | njer A;| for all I € [k], want to find |B|, where B = A; u ... U Ay;.

|IBl|=So—S1+82—+...,p = “%“, uniform dist.

Answer (Inclusion-Exclusion formula):

So = 9]
ST = |A1|+"'+|Ak|
Sy = |A1ﬁA2|+|A1ﬁA2|+"'+|Ak71f\Ak|

Sj = Z |Ailf\"'ﬁAi],|

1<ig < <i; <k

and number of terms in S is (I;)
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Example: |Q] = 5" strings with digits 1,2, 3,4,5, A, set of those that miss ith digit, 4, n A;. 5" —5 4" +

(3) #3" = () = 2" + () = 1"

Proof: For any = (diagram), look at r(z) = #{i|z € A;} = r and ¢(z), the contribution of x to Sy —S1+---.

Need to prove:

@) = {1 if € B, ie. r(z)

0
Oifx ¢ B, ie r(z)=1

Now,
r r lifr=20
=1- - = (1= 1) =0 =
(@) r (2) (3) * (1-1) {Oifr>1

More general version (we only have over uniform distribution): over any probability distribution:

Theorem 5.11 If Ay,..., Ay are events and p; is defined by (*), then P(B) = po —p1 +p2 — +...

) (0P 4.

IC[k] iel

where (*) is

po = PQ)=1
p o= Y, P(A)
p2 = ZP(Ai N A4;)

(general).
®: Adapt previous proof

A, B events, I, indicator variable:
lifze A
Iy(z) = {

Oifz¢ A
ESY
Ixoop = Ialp
Iz = 1-1Iy
Now
Q+z)(l+a) - (Lt+a,) = Y [[a
Ic[n] i€l
A—a)(i—w)(=z) = 3 (~)]]a
IS[n]
Now,

B=A1U--VA,=41n-nA,

Ig = HI o= H(l —IAi) = (_1)u| HIAi = 2 (_1)|I‘Iﬁi61Ai

i=1 Ic[k] i€l Ic[k]
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By linearity of expectation,

P(B)=E(Ip) = Y (~O)E(nga, = Y] (“DVP(nierds)

IC[k] Ic[k]

Application 1: explicit formula for Euler’s ¢ function:

n t
i=1 i=1

Proof: ) = [ ], A; € Q = set of numbers divisible by p;, B = UA; = {j : ged(4,n) = 1}, ¢(n) = |B|.
|A;| = (A)=p,|A mA|—pp, P(A; mA)—pp,umforrndlstrlbutlon P(B) = ‘Bl
1
- B R - D0 = 8 T - Tlo-
IIC[t Hpi IC[t] el P
iel

Application: “derangement problem”: probability that random permutation is a derangement ~ % In MN,
read “Hatcheck Lady & Co.”

Now, back to random variables.
Definition: X, Y random variables are independent if
(Va,y € RY(P(X = 2,Y = y) = P(X = ) P(Y =)

If E(XY) > E(X)E(Y), X and Y are positively correlated, if E(XY) < E(X)E(Y) they’re negatively
correlated, if equal then they’re uncorrelated.

Note that independence = uncorrelated but not the other way around.

Corollary 5.12 If P(y =y) #0, then P(X =z) =Pz =z|Y =y).

Q: If X, Y independent, then E(XY) = E(X)E(Y).

D: Events A4, B independent <= 14, I are independent.

Definition: Random variables X7, ..., X} independent (fully independent, mutually independent, collec-

tionwise independent) if

P(X

:F

(Vx1,...,2x € R)(P((Vi)(X; = x;))

i=1

®: Events Ay, ..., Ay are independent <= I4,,... , 14, independent.

Theorem 5.13 If X1,..., Xy are independent, then
k k
E([x)=]]EX)
i=1 i=1

®: If X,Y, Z, W, T are independent random variables, then X + Y, cos(Z — W), e are independent.

R If X — 1,..., X\ are independent random variables and [k] = [; w - -+ w I; partition and fi,..., f; are
functions and f; has |I;| variables, then f1(X; : i€ I1), ..., f+(X; : i € I}) are independent random variables.
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The covariance of X and Y is
Cov(X,Y) = E(XY)—- EX)E(Y)

X and Y are positively correlated if Cov(X,Y) > 0, negatively correlated if Cov(X,Y) < 0, uncorrelated if
Cov(X,Y) = 0.
The variance,or second moment, is

Var(X) = E

Have
Var( ZX ZVar i)—i-QZCOV(XZ',Xj).

i<j

For X; a random variable, X = Y X,
~ B[} X,] = S ELX)]

Also,

Var(z X;) = B[, X:)’] — (B[, Xi])?
R (1 4+ ) —ZZJZ xj = Zx +22:czx]

i<j

Now,

E[(Q]X:)°] = (B[ X))
ZX2 +22XX - E(X

ZE X2 +22EXX (ZE(Xi)2+22E(X E(X

Var(z Xi)

- Z(E(Xf) ) + 22 (X3, Xj) — E(X;)E(X;))
= ZVar(Xi) +2 Z Cov(X;, Xj)

Var(}] X;) = >, Var(X;) and standard deviation (SD) is o(z) = 4/Var(X).
Var(X) = E(X?) - BE(X)? 20 = E(X?) = B(X)?

The last inequality is the Cauchy-Schwartz Inequality, perhaps in a different form than you’ve seen before.
Another representation of Cauchy-Schwartz:

(D, XYi)?

E(XY)?

QXY

E(X?)E(Y?)

NN
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Setting a = X;/\/E(X?), b = Y;/\/E(Y?),

a2 +0®>2b — E(a®) + E(b?) = 2E(ab)

X? y? X,
= Fleoy) M) Z P Eae)pe?)
= 1+1> o BXY)

EX)Y (V7)

A Bernoulli trial means tossing a biased coin: H with prob. p, tails with prob 1 — p. A k-Bernoulli trial is
a completely independent set of k& Bernoulli trials, X; = P[n — Bernoulli trial will have k heads].

n n—
P(Xy) = (k>p’“(1—p) g
Let Y; be the outcome of the ith Bernoulli trial (=1 if H, 0 if T). Define X = }}Y;, get
E[X] = E[),Yi] =Y E[Yi] = Y,p=np

Var[X] = Var[} ¥i] = ) Var[¥i] = Y [E[Y;"] = EVil’] = n(p = p*) = np(1 = p)

i
The weak law of large numbers says that for €, p > 0 fixed,
P[|X"™ —np| > e(np)] =noo0 0
To prove, this need the Markov inequality: for n a random variable, non-negative,

Ply>a < 211
Proof:
Elnl = Y mPn = p) > 3 wiP(n =) >a Y, Pln=p) =aPly>a]

Hi>a Hi>a
This is the first of the so-called concentration lemmas. Another is Chebyshev’s inequality:

Plln—m|>a] < Va;(n), m = E(n)

Proof:
P[ln—m|>a] = P[(n—m)? > a’] <

C’s inequality proves the WLLN, because

n np(l—p) (1—p)
= P[|X" —np| > enp] < ZnZp? = Zom -0

as n — o0. Now, some problems.
A random graph on n vertices: for each (v;,v;) toss an unbiased coin to decide whether the edge is in
the graph. Then want to show that

P[AIl vertices in the graph has degree close to g] e |

The expected number of neighbors of a vertex is (n — 1)/2.

n—1|< e(n—1)
2 2
n—1 - e(n—1)
2

P[Vo e V, |N(v) —

P[Ave V, |N(v) —
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Y, is probability that for vertex v, |N(v) — ”771| > @, want P[J, Yo] — 0. The union bound is
P Y. 1< ) PV.] 10

(N(v) is the degree of vertex v) Now

n—1 - e(n—1)

P = PIN@) - " )
Var(Y,) n 1 1

- ;=5 =0(=

(e~ aam = O

So here, Chebyshev isn’t enough. Need Chernoff bound: let n; be 1 with prob. %, —1 with prob. %,

E[n;] =0. Then

a2

P, ni > a] < exp(—5-)
= 2n

We can adapt this slightly for our purposes, take n; =1 w.p % , = 0 otherwise,
n 2,2

P Y, m— 51> S <exp(—(5) = exp(=0(n))
i=1

5.2 Random graph

With high probability,” when the last vertex is reached by an edge, the graph is connected. There’s a whole
theory of random graphs. Whole subject stems from one original paper: Erdos & Rényi 1960, “Evolution of

random graphs.” Choosing m edges at random, || = ((ﬁl)) Note that if know one edge there, any other edge
less likely to occur, so they’re negatively correlated. In another model, edges are thrown in independently
with probability p, then m = (g)p = FE(# edges). The first model is referred to as G, model, second is
G,,p model, much more studied.

Most frequently studied in an introduction to random graphs is G, 1

Definition: The diameter of G is diam(G) = max, yev dist(z,y). The distance between z,y € V is
dist(z,y) = minlength(x — y path).

For example, diam(K,,) = 1, longest path is K,, = n — 1.
Theorem 5.14 Almost all graphs have diameter 2, meaning if p, = P(diam(G,, %) = 2), then lim p, =1
’ n—o
In fact, diam # 2 is exponentially unlikely: 1 — p,, < C™ for some constant 0 < C' < 1, find < 0.76" V.

D: Vp > 0 constant, P(diam(G,, ) = 2) — 1.

Let
gn = P(diam(G, 1) > 3)
A
re = P(( £y V() ~ 2~ 1)
By,

A, => B, because if diam > 3 then 3z, y such that dist(x,y) > 3.

5Also written “w.h.p.” Means in some limit, the probability of an event A occurring is one, which is different from event A
always occurring. When a coin is flipped n times, the probability a head comes up at least once is small but finite. As n — o,
P(at least one H) = 1, even though the infinite sequence TTTT... could occur.
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Claim: r, — 0 at an exponential rate.

Proof: For z #y eV, A(z,y) = “x,y have no common neighbor” = | “z is not a common neighbor”,

z#£T,Y
which are n — 2 independent events. To see this, fix z,y,z, P(x ~ z,y ~ 2) = i, z is a common neighbor,
so P(z is not a common neighbor of z,y) = 2, and

P(A(z,9)) = (3)m2

4
(5) A=) N 3 3
P(Ee#y) Ay)=P( |J _< 2>(4)n2 <Cror

(")choices T#Y unionbd
2

for n = ng, Ve > 03dng., where last < is ce.

5.3 Digraphs

Directed graphs. A digraph is a relation on V, E € V x V. We can use graphs as digraphs by replacing an
edge with —.

A directed walk is vg — v1 — ... — vy of length k, a directed path has no repeated vertices, a cycle has
Vo = Vg. Y is accessible from x if 3z — - -y path (means directed path). Say “y is accessible from x”, k = 0.

®: Accessibility is a transitive relation.

Definition: z,y are mutually accessible if x is accessible from y and vice versa.
@: This is an equivalence relation.

Definition: The strong components are equivalence classes.

Q: The strong components form a poset under accessibility.

Have sources and sinks, nice figures here.
Definition: Weakly connected means “connected” if we ignore orientation.’
The adjacency matriz of G = (V, E) is a (0, 1)matriz, V = [n], A = (a;;),

Qs =
Y 0 otherwise

The transpose of this is B = AT, b;; = aj;. G'®VTSC corresponds to adjacent matrix AT,
Definition: A symmetric matrix is A = AT ( <= undirected, loops permitted).

A DAG is a “directed acyclic graph” (no cycles) .

D: Prove G is a DAG <= has a topological sort.

Now, Ais k x 1, Bisl xn, C = AB = (c;j),

l
Cij = Z Qitby;
t=1

For A an adjacency matrix of G = (V, E), A% = (b;;), n x n, b;j = Z @it Gy, SO bij =# 2-step ¢ — j walks.
t=1

6 “Connected for pedestrians, not for automobiles. Or bikes. I like riding my bike the wrong way.. at least I know who is
hitting me.”
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D Ak = (cij), cij = # of k-step walks ¢ — --- — j.

A discrete stochastic process is a set of states B and transitions between states. A finite Markov chain is
a finite set of states and fixed transition probabilities, V' = [n], p;; = P(X¢11 = j | X¢ = i), X; is location
of particle at time t. Let T = (p;;) be the transition matrix of a finite Markov chain, then 7% = (g;;),

n
9ij = Zpupz]' .
1=1

D pup; = P(Xip1 =1l and Xyqo = j| Xy =14)
So, = P(Xy49 = j| Xt = 1), 2-step transition probabilities

Ef) = P(Xy4r = j| Xt = 1), k-step transition probabilities

D TF = (), p

ij
If T*% ~ uniform = %J, J is matrix with all 1’s.

n
Observation: Every row of T is > 0 and sums to 1: Z pi; = 1.
j=1

n
Definition: T is a stochastic matriz if t;; > 0 and Z ti; = 1.
i=1

Have a digraph associated with T a;; = 1 <= p;; > 0. One interesting question is whether it’s strongly
connected.

5.4 Matrix theory and applications to digraphs and finite Markov chains

n
Entries of A¥ count k-step walks i — --- — j. T is a stochastic matriz if pi; = 0, Z pij = 1, the row sums.
j=1
The adjacency matriz has entries

1 iy
Gij = .
0 otherwise
The transition matriz T = (pi;),
pij = P(Xey1 = j| Xy =1)
The entries of T}, = (pgf)) are the k-step transition probabilities.
Definition: For A an n x n matrix with real or complex entries, \€e Ror C, z € R” or C*, = [x1 - - - 7,,]T

x is a right eigenvector of A to eigenvalue \ if x # 0 = [0---0]7 and Ax = \x. For y = [y1---yn]?,
yT = My, yT is a left eigenvector. X is a right eigenvalue of A if 3 corresponding right eigenvectors.

Theorem 5.15 Right <= left eigenvalues.

F is the “field of scalars”, FF = R or C.
Definition: The vectors 1 = [x11 - 21,]7, ... &k = [Tr1 -+ Thn )T
trivial linear combination is zero, where

are linearly independent if only their

MMz 4+ A =0
is a linear combination, x;; € F', \; € F', Ay = --- = A;, = 0 is the trivial linear combination.

Definition: rank(xy,...,2;) = maximum number of linearly independent vectors among the x;.
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Comments: If (3i)(x; = 0) then x1,...,x, are not linearly independent,
0zy + -+ 1x; + -0z, = 0.
If (35 # j)(x; = x;), then
+lz;+ - +(-Dxj+_--- =0
W—/

~—
0 0 0

®: In R” find n + 1 vectors such that every m of them are linearly independent

For A a kxI matrix over F, the column rank of A isrank(ay,...,a;) and the row rank of A is rank(ry,...,7g),
where a; is the ith column of A, r; is the ith row of A. By definition, rowrank(A)=colrank(A). But:

Miracle # 1 (of linear algebra): If S € F”, then every maximal (=nothing can be added to
preserve linear independence) linearly independent subset of S is maximum (=largest).

Miracle # 2: colrank=rowrank, i.e. colrank(A)=colrank(AT).
Definition: For S a set of vectors, span(S)=set of all linear combinations of S.
Obs: VS € F™, 0 € Span(9S) even if S = .
Definition: U € F" is a subspace if (0 € U) and U is closed under linear combinations.
®: Span(S) is always a subspace.
Definition: If U € F", dim(U) = rank(U).

If dimU = d then 3d linearly independent vectors in U and no more.
For by,...,by,

Claim: Span(by,...,by) =U

Proof: Let @ € U. NTS: @ € Span(by, ..., bg), i.e., I\1,..., A\g € F such that z = A\1by + -+ + Agbg.

d
We know that by, ..., by, x are linearly dependent, i.e. da, ..., a4, agt1, not all zero, such that Z a;b;+
i=1
Ag41 = 0.
Claim: 441 # 0 because by, ..., by are linearly independent, so > (—=2-)b; = v’

Qd41

Definition: A basis of a set of vectors S is a linearly independent set of vectors in S which spans S, i.e.
S < Span(those vectors)

Example: Column-basis of a matrix A.

Theorem 5.16 FEvery mazimal linearly independent subset of S is a basis of S

Proof: &
Theorem 5.17 aq,...,a; € U (subspace) is a basis of U if and only if every € U can be written as a
unique linear combination of a1, ..., ax.

Obs: If aq,...,a are linearly independent and Y aja; =Y f;a; = (Vi)(a; = ;)
Proof: > (a; —f;)a; =0
Obs: Conversely, if a1, ..., ay are linearly dependent, then every vector in Span(as,...,ax) can be written

as a linear combination in more than one way.
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Proof: 0 =0a;+---+0ar = M\ai+---+\a; with not all \; = 0. Suppose now & = > aza; = > (a; +\;)a;.

The standard basis of F" is ey, ..., e, (defined as usual, I'm not writing out). This is a basis because
Z%‘ei =lar o, e F",

and this decomposition is unique.

Corollary 5.18 dim F" =n

D If aq,...,a; € S are linearly independent, then this can be extended to a basis.
Definition: ai,...,a,, generate U if U = Span(a,...,a,).

D: Ifay,....a, generate U, then 3 a subset of them that is a basis.

Matrix notation: say Ax = b for A a k x [ matrix, € F', be F*, denotes a system of linear equations

a11xr1 + -+ ayx by

1Ty + -0 Fapr; = by

A =ai,...,a;], a; the jth column of A, Ax = z1a1 +-- -+ z1q, (A). So in the system of linear equations
Ax = b, we are looking to express b as a linear combination of the columns of A.
r1a1 + -+ xya; = b, x; unknown,

Corollary 5.19 Az = b solvable < be Span(ay,...,a;) < rank(A) = rank(A|D)

The method to solve a system of linear equations = method to find rank: this is Gaussian elimination,
READ anywhere, not going to do here.

A homogeneous system of linear equations is Az = 0. x = 0 is always a solution (trivial solution). A
nontrivial solution exists <> ay,...,a; are linearly dependent, > z;a; = 0.

Corollary 5.20 For a k x | matriz A, the following are equivalent:

Ax = 0 has no nontrivial solutions.

The columns of A are linearly independent.

rank(A) =1

The rows of A span F'

A has a left inverse, i.e. B, [ X k such that BA = I;, the | x | identity matriz

G o o~

Review the proof of the equivalence of (1)-(4)
Show (5)
rank(A - B) < min{rank(A), rank(B)}

Find A, B with rank;0 such that A x B =0 (and A, B # 0).

g9 0 0 0 ¢

Find A # 0 such that A2 =0
B If F =R, then rank(AT A) = rank(A).

Theorem 5.21 For an n X n matriz A over F, the following are equivalent:
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Ax = 0 has no nontrivial solution.
Vbe F" (3z)(Ax = b)

(Vbe F™)(3x)(Ax = b)

Columns of A are linearly independent.
Rows 7

Columns span F™
Rows span F™.

A has a left inverse

© % RS G o~

A has a right inverse
A has a 2-sided inverse
11. det(A) # 0

~
S

Name derives from fact that it “determines” whether or not the set of linear equations has a nontrivial
solution.

Definition: A is nonsingular if det(A) # 0

®: Equivalence of all but the last property (det) in the previous theorem.

a b
det <c d) = ad — bc

Note: If A n x n then det A is a sum of n! terms, half 4, half -. The eigenvalue equation is Ax = Ax, x # 0,
Ax = Mz, I = I,,. So Ais an eigenvalue <= 3Jx # 0 such that (A\] — A)x =0 <= A — A singular.

Definition:

Theorem 5.22 ) is an eigenvalue <= det(A] — A) = 0.

Fact: det(A) = det(AT) Example: A as above, eventually get
det(A\ — A) = \* — (a + d)X\ + (ad — be),

a quadratic equation in A, say fa(t) = det(t] — A), this is a polynomial of degree n, the characteristic
polynomial of A.

Corollary 5.23 X\ is an eigenvalue of A < fa(\) =0, i.e. X is a root of the characteristic polynomial.
Corollary 5.24 Left <= right eigenvalues the same, because fa(t) = far(t).

D: A is stochastic <> a;; = 0 and 1 is an eigenvalue with right eigenvector [1--- 7.
A group (G,"), (G,+) has (Va,be G), -: G x G — G, (a,b) — ab

Alee G)(“ab=")(“a+b=1C")

associative: (ab)e = a(be), (a +b) +c=a+ (b+c).

identity: (Je)(Va)(ae = ea = a), e is the identity

inverse: (Va)(3b)(ab=ba =e),b=a"t, (Va)(Ib)(a+b=b+a=0), b= (—a).

commutativity: ab = ba, a + b = b + a, if true this is an abelian group

O W =

Some groups are (Z, +), (R, +), R* = R\{0}, (R*,-). For Z,=residue classes mod n, (Z,,+) is a group,
(Zy,-) isn’t, define Z,, = reduced residue classes mod n = residue classes that are relatively prime to n,
|2 = é(n),

Q: (Z%,-) is a group.
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GL,(R) is the group of n x n nonsingular real matrices, det # 0, means 3 inverse, full rank. Can have
time for GL, (F), where F is any field. The identity element is I, the n x n identity matrix.

®: Give simplest proof that if A, B nonsingular, then AB is nonsingular.

The symmetric group of degree n is all permutations of [n], S,, where a permutation is a bijection
f:[n] = [n] (bijection),a — a’
id

Va, o' = a, |S,| = nl.

Example:

12345 1 (42531
f: = [T
42531 12345

34152 1 12345
f: = [T
53412 52413
Composition of permutations:

12345 12345 42531 12345
[ S = = fg:
42531 43512 13254 13254
f has 3 inversions, g has 5, fg has 2 (check... not sure I got it right). Let Inv(g) be # inversions of g, and
Inv(fg) = Inv(f) +Inv(g) mod 2
. 123--n
- \213--n
Inv(t) = 1. So for (Vf)(Inv(ft) =Inv(f) +1 mod 2), |S;| =1.
Definition: f is an even permutation if Inv(f) =0 mod 2, an odd permutation if Inv(f) =0 mod 2.
Corollary 5.25 # even permutations = # odd permutations (assuming n > 2)
This is because f — f -t is a bijection between even and odd permutations. A transposition switches two
elements,
12+ 4-+-j--n
tij = .
12---]---7]---”
Inv(t;;) =2(j —i) —1 =1 (mod 2), so all transpositions are odd.
®: Transpositions generate S,,.”

Theorem 5.26 A permutation f is even <= f is the product of an even number of transpositions.

Cycle notation: pictures of 1-4—3 — 5, 2 — self, f is a 4-cycle (don’t count identity), g is 1 —» 4 — 1,
2—-3-5

Definition: A k-cycle is i1 — cg — -+ - +— ij — i1, everything else fixed.
Notation: (i1 4z ... i), so f = (1435) = (4351), g = (14)(235) = (235)(14), this is cycle notation

Theorem 5.27 Fvery permutation is a product of disjoint cycles, unique up to the order of the factors.

7Says written on an open-shelf math library in Germany: “Dear patrons: please remember that transpositions generate S,.”
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Transpositions (ab) are odd, (123) = (12)(13) is even, (1234) = (12)(13)(14), etc., gives
Theorem 5.28 A k-cycle is even < k is odd.

Sign of permutation is sgn(f) = (—l)InV(f): 1if fis even, —1 if f is odd.

: sgn(fg) = sgu(f) - sgu(g)

Definition: For A an n X n matrix,

det(a) = 3 S8uU) Hlaiis

|
3. n!
(in definition, the product is the expansion term.)
Theorem 5.29 Let A = [aq,...,a,], elementary operation is a; — Aaj, j # i, A a scalar, det(A’) =
det(A).
(There’s a whole example here using \..)
Proof:
detlai, - a;,—Aa; - -a;---a,] = det A+det[a,---[-Aa;]a; - a,] = (=) det[ai, - ,a;,a;,...,a,] =0
w_/
A [a1,a2,...,a,] (a1 =b+c)
B [b,as,...,a,]
¢ = [C,a27"'7an]
D = [Aai,a2,...,0,]

det(D) = Adet A. Warning: A # B+ C, D # \A.
If @y = 0 then det A = 0, if 37 # j such that a; = a; then det A =0

Theorem 5.30 If two columns of A are equal then det A =0
Proof: We can match up the expansion terms into pairs that cancel.

Corollary 5.31 det A doesn’t change if we subtract any linear combination of columns other than a; from
a;.

Corollary 5.32 If rankA < n then det A =0

Proof: rankA < n <= columns linearly dependent = (3i)(a; € Span(ai,...,a;—1,Qit1,...,Qn),
subtract = get 0 column = det =0

This means Gaussian elimination “works.”® Can look up what Gaussian elimination is online. Another
important fact:

Theorem 5.33 If we switch columns A — A’, det A’ = —det A.

More generally, if we apply f € S,, to the columns of A, A — Af, det(A/) = sgn(f)det A.

®: Elementary operations don’t change the rank of A.

8“The goal is to tame the determinant, this horrible expression, by making as many zeros as possible.”
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Corollary 5.34 det A =0 < rank(A) < n.

Theorem 5.35 (Fundamental Theorem of Algebra) If f(z) is a polynomial over C and deg(f) > 1

then (3a € C)(f(a) = 0), .". if f has degree n then f(z) = ap(z —aq) - (x — ap)

Also (new theorem), if f(x) = ag + a1z + --- + ana™, deg f = n if a, # 0 then f(z) =

polynomial, i.e. z — | f(z). ()
deg(0) = oo, where 0 is seen as a polynomial (def of polynomial is that ag # 0.) Also,

1. deg(fg) = deg(f) + deg(g)
2. deg(f + g) < max{deg(f),deg(g)}
3. if deg(f) # deg(g), then = same.

n—1
For f(z) =a2" - 1= H(w — w;), where wp,ws, . ..,w, the nth roots of unity,
i=0

2mj L. 21y
wj =cos(——) +sin(——
5 = cos(“) 4 isin(2)
The order of wj is the smallest k& > 1 such that w} = 1, e.g. the order of w; is n.
Definition: w; is a primitive nth root of unity if its order is n.

X: Prove: wj is a primitive nth root of unity < ged(j,n) = 1.

Corollary 5.36 # primitive nth roots of unity is ¢(n).

(z — a)g(z), g a

®: Suppose w is an nth root of unity, w™ = 1, then if k = order of w then kln = w is a positive kth root

of unity.

Conversely, if k|n, then every kth root of unity is also an nth root of unity:

=3
=3

F=1 = =M =1F =1
Let U,, = { set of primitive nth roots of unity}, V,, = {all nth roots of unity}.

Vn = L'Ud‘nUda n = |V"’L| = Z |Ud|
A

n = ng)(d), at—1= H@d(:c). at—1= Hw(x — w), where w is an nth root of unity,
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w the same, deg(®,,) = ¢(n), the nth cyclotomic polynomial

@1(.13) = r—1
@2(1’) = z+1
13 13,

O3(x) = (x+§ +27)(x+§ +27)—x +r+1
Py(x) = (z+i)(z—i)=2"+1

a®—1 4 3 2
P5(z) = S =Y tet+e +z+1

= (z—1)P5(z) =2" -1

-1 = H=16<I>i(x)=x2—x+l
Pg(z) = 2?—2+1
Or(z) = Cilh S S
7\ = 1 =T x

8 —1 4
Pg(x) = g +1

(There’s some algebra in there didn’t write down.) Erdés found that the coefficients here get very large.

@ All cyclotomic polynomials have integer coefficients.

n X n matrix A, if « is a vector  # 0 and 3\ scalar such that Ax = Ax then we call x an eigenvector
to eigenvalue A.
A is an eigenvalue if 3x # 0 such that Ax = \x.

Az =X x =Nz = Mz —Az =0 = (M —a)z =0

A an eigenvalue <= Jx #0: (Al — A)x =0 < A — A is singular <= det(A — A) = 0.
An n x n matrix fa(t) = det(t/ — A) = polynomial of degree n. Sketches the matrix out, get

det = t" — (D) t" " £+ (=1)"det A
;_v__/

trace(A)

Corollary 5.37 A is an eigenvalue of A <= fa(\) =0, X\ is a root of the characteristic polynomial.

i _ (cosf —sinf) [t
') \sinf  cos@ j
Say Rg = this matrix, the rotation matrix. Then Ro4g = Ro + Rg, shows

<cosa —sin a> (cos 5 —sin ﬂ) _ (cos(a +0) —sin(a +ﬂ)>

sina cosa sinf  cosf sin(a + 8)  cos(a + )

Something coordinate related:

D = (i;) and ' = Ryx then 0 is the angle between x and x’.

So
t — cos « sin o
—sina  t—cos«

2=¢>_9cosat+1

fr.(t) = ‘ = (t —cosa)? + (sina)

eventually get A\j 2 = cosa £ isina.
Recall that a digraph is strongly connected if h = period = gcd of lengths of all closed walks.
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Q: Period(z) = ged of all closed walks starting at . If G is strongly connected = (V2 € V)(period(z) is the same)

®: Period is multiple of k < graph can be divided into k clusters around a circle such that all edges go
from one cluster to the next.

Digraph associated with an n x n matrix: i - j < a;; # 0.
Q: For a stochastic matrix A, when does A™ converge?
Assume G is the digraph associated with A, G strongly connected, such A is called irreducible.

Theorem 5.38 A" converges <= G is aperiodic.

means period=1 corollary to Frobenius-Perron theorem.
Stationary distribution. Say ;1 = x:T,

x, = xoT?,

evolution of the Markov Chain. The stationary distribution is x such that €T = x, the left eigenvector to
eigenvalue. (note that v = [1---1] is a right eigenvector). If have a strongly-connected Markov chain, then
J a unique stationary distribution.

Theorem 5.39 1. For all finite Markov chains, 3 a stationary distribution.

2. If the corresponding graph is strongly connected (=Markov chain irreducible), then the stationary dis-
tribution is unique.

A regular graph of degree d has (Vz)(deg(xz) = d). For A the adjacency matrix,

lifi~j
Qs =
Y 0 otherwise

(t)

The transition matrix is then T = 1A = (p;), T" = (pij ). The largest eigenvalue is A\; = d, then

Ai 1= maXegigcn |Ai] < d.
Theorem 5.40 |pl(§) — %| < (%)t

(n = |V| as always.) So the convergence rate is governed by the eigenvalue gap, and this is a basic principle.
For A, B n x n matrices,

Theorem 5.41 det(AB) = det(A) det(B)

this can be looked up in “the resources.”

R: det(A™1) = ﬁ(m

Definition: A, B are similar, A ~ B, if 3 S, S~! such that B = S~1AS.

This is an equivalence relation (®). If A ~ B then det(A) = det(B) (&) (Hint: use det(AB) formula).
®: fa(x) = det(xI — A) the characteristic polynomial, If A ~ B then fu(z) = fp(z).

T—M - 0
fp(x) = det = [T —x)
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Example: A = ((1) }) is not diagonalizable. Proof by contradiction: assume 3 S, S~!, then
fa(z) =det(xl — A) = (x — 1)*

So if A is diagonalizable, then A ~ I, ST1AS =1, A= SIS 1 =1, »«.

Q: (*) Prove: if all roots of f4 are distinct, then A is diagonalizable.

Definition: An eigenbasis for A is a basis of F™ consisting of eigenvectors of A, i.e. n linearly independent
eigenvectors.

Theorem 5.42 A is diagonalizable <= 3 an eigenbasis.

Proof: A is diagonalizable «<= 35, S

A1 0
S'AS =D = ,
0 An
— AS =85D =[s1...8,]D = [M51,...,\nSp] < all s; are eigenvalues <= eigenbasis. (S =
[s1,...,8n], columns linearly independent.)

The standard inner product on R™ is
roy:=x'y= Z TilYis
i=1
with the dot product defined as usual. Define the norm (length) of @ to be ||z|| = VaTz = /> z7.
Q: Cauchy-Schwarz: |z”y| < ||z|| - ||y||. Prove this based on Var(X) >0, E(X?) > E(X)?

We say & and y are orthogonal if 7y = 0, and a set of vectors is orthogonal if they are pairwise
orthogonal.

D If vy, ..., vy are nonzero, orthogonal vectors, then they are linearly independent.
A basis vy, ..., v, is orthonormal if it is orthogonal and ||v;|| = 1.
®: Any orthonormal set of vectors can be completed to an orthonormal basis.

An n x n real matrix A is orthogonal if AT A = I. (From now on, assume every matrix is n x n and real.)
For A =[ay,...,a,],

lifi=j
aZ-Taj= IZ j < ay,...,a, ONB
0if i # 7

Now if ATA = I then 3A~! = AT then AAT =1 — AT orthogonal = rows of A are ONB.
Theorem 5.43 If A is orthogonal then (Azx)T (Ay) = zTy.
(Orthogonal matrices correspond to “congruences” of R™.)
Proof: .
(AB)T = BT AT
(Az)T = 2T AT
(Ax)T(Ay) = a:TATAy = xTIy = a:Ty
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Define the spectral norm of A as
|| Az|]

xeR™ x#0 ||:B||

1Al =

D 3 max
Note that if A is an eigenvalue then ||A|| = |Al.

Proof:
Az = Az, ||Az|| = || || = [A[|z]|

last equality is &, then
|| Ax]|

]|

1Al = = AV

&: (*) This is true if A e C.

Then states spectral theorem.
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