Discrete Math 37100-1 Lecture Transcriptions

Originally created by Morgan Sonderegger in 2007.
Edited and expanded by Lars Bergstrom in 2008.
January 14, 2009

1 Preliminaries

Definitions of sets. $A=\{1,2,3,3\}$ is the set with members 1,2 , and $3 .|A|=3$, read as the cardinality or size of A is 3 . \forall is the "universal quantifier." Notation:

$$
(\forall a \in A)(\exists!b \in B)(b=f(a))
$$

means "for all a in A there exists a unique b in B such that $b=f(a)$." The number of functions $A \rightarrow B$ is $|B|^{|A|}=\left|B^{A}\right|$, define

$$
B^{A}=\{f \mid f: A \rightarrow B\}
$$

\neg stands for negation. The Cartesian product is

$$
A \times B=\{(a, b) \mid a \in A, b \in B\},
$$

and $|A \times B|=|A||B|$. A relation is a subset $R \subseteq A \times B$, "relation between A and B." A relation on A is $R \subseteq A \times A$.

Example: $A=\mathbb{R}, a<b$ with $a, b \in A$, have relation $<$,

$$
R=\{(a, b) \mid a<b\},
$$

write $a R b$.
R is a transitive relation if

$$
(\forall a, b, c) \text { (if } a R b \text { and } b R c \text { then } a R c \text {). }
$$

A reflexive relation has $(\forall a)(a R a)$, a symmetric relation has $(\forall a, b)$ (if $a R b$ then $b R a) . R$ is an equivalence relation if it is reflexive, symmetric, and transitive. A partition of a set A is

$$
\left(T_{1}, \ldots, T_{m}\right): T_{i} \subseteq A, A=T_{1} \uplus T_{2} \cup \ldots \uplus T_{M}, T_{i} \neq \varnothing,
$$

where \uplus means disjoint union, applies only if $T_{1} \cap T_{2}=\varnothing$.
Every partition of A defines a unique equivalence relation on A. In fact, this is a 1-to-1 correspondence (bijection), DO. ($=$ "do it, but do not hand it in.")

Q: $\frac{a}{b}=\frac{c}{d}$ if $a d=b c$, show this is an equivalence relation on $\mathbb{Z} \times(\mathbb{Z} \backslash\{0\})$.
In an equivalence class (partition), a function of two items from the same class should also be in the same class in the result set of that function.

2 Number Theory

a divides b, written $a \mid b$, if $(\exists k)(a k=b)$. For example, $7|21 . a| 1 \Longleftrightarrow a= \pm 1,1 \mid a$ always, $a \mid 0$ always (take $k=0)$. Note that $0 \mid 0$ by this definition. $0 \mid a \Longleftrightarrow a=0,(\forall a)(a \mid a),(\forall a)(a \mid-a)$. Also, $(a-b) \mid\left(a^{2}-b^{2}\right)$.

Divisibility is

- Reflexive: $a \mid a$.
- Anti-symmetric $(a \mid b$ and $b \mid a) \Longrightarrow a= \pm b$.
- Transitive (8)

Definition: a is congruent to b modulo m, written $a \equiv b \bmod m$, if $m \mid(a-b)$.
(Also called "calendar arithmetic", in relation to mod 7 congruence) Even integers are congruent mod 2, odd integers are congruent mod 2 , so congruence $\bmod 2$ is an equivalence relation.
: $(\forall m)(\bmod m$ congruence is an equivalence relation $)$
Q: If $a \equiv x \bmod m$ and $b \equiv y \bmod m$, then $a+b \equiv x+y \bmod m, a \cdot b \equiv x \cdot y(\operatorname{all} \bmod m)$.
Definition: Modulo m residue classes are the equivalence classes of the mod m congruence relations.
Theorem 2.1 There are exactly m of them, and we can do arithmetic on the residue classes.

		0	1	2	3	4
Multiplication table modulo 5:	0	0	0	0	0	0
	1	0	1	2	3	4
	2	0	2	4	1	3
	3	0	3	1	4	2
	4	0	4	3	2	1

Definition: $\operatorname{Div}(a)=\{b|b| a\}$ is the set of divisors of a.
$\operatorname{Div}^{+}(a)=\{b>0|b| a\}$ is the set of positive divisors of a.
$\operatorname{Div}(a, b)=\operatorname{Div}(a) \cap \operatorname{Div}(b)$.
Definition: The greatest common divisor of a and b is the max element of $\operatorname{Div}(a, b)$. Note that $\operatorname{gcd}(0,0)$ is defined to be zero, by point 2 of the definition below.

Theorem $2.2\left(^{*}\right)(\forall a, b)(\exists d)(\operatorname{Div}(a, b)=\operatorname{Div}(d))$ and is unique up to sign.
Definition: If this holds, then $d=\operatorname{gcd}(a, b)$.
Note that the theorem allows negative numbers, but the $g c d$ does not. $(\forall a, b)(\operatorname{gcd}(a, b)=\max (\operatorname{Div}(a) \cap$ $\operatorname{Div}(b))$ except when $a=b=0$. By definition, d is a $g c d$ of a and b if $\operatorname{Div}(a, b)=\operatorname{Div}(d)$. Equivalently, d must satisfy the following conditions:

1. $d \mid a$ and $d \mid b$
2. $(\forall e)($ if $e \mid a$ and $e \mid b$ then $e \mid d)$

Definition: $a \cdot \mathbb{Z}=\{a \cdot x \mid x \in \mathbb{Z}\}$
For example, $3 \cdot \mathbb{Z}=\{0, \pm 3, \pm 6, \pm 9, \ldots\}$.
Definition: Let $A \subseteq \mathbb{Z} . A$ is a subgroup if $A \neq 0$ and A is closed under subtraction (i.e. $(\forall a, b \in A)(a-b \in$ A)).

Theorem 2.3 (Division Theorem)

$$
(\forall a, b \neq 0)(\exists!q, r)(a=b q+r \text { and } 0 \leqslant r<|b|)
$$

Example: $a=100, b=7$. Solve $100=7 \cdot q+r$, where q is quotient and r is remainder. Get $q=14, r=2$. A module is a set that is closed under subtraction. Example: $(\forall d)(d \mathbb{Z}$ is a module)

Theorem 2.4 if $A \subseteq \mathbb{Z}$ is a module then $(\exists d)(A=d \mathbb{Z})$

Proof:

1. $0 \in A$ since $A \neq \varnothing \Longrightarrow \exists a \in A$ such that $a-a=0$.
2. $-a \in A$ since $0 \in A, 0-a=-a$
3. $a, b \in A \Longrightarrow a+b \in A$ since $-b \in A, a--b \in A$
4. $a \in A \Longrightarrow a \mathbb{Z} \subseteq A$ (all multiples of a belong to $A)$ NTS: $(\forall n \in \mathbb{Z})(n a \in A)$ Simple induction on n

Theorem 2.5 Let d be the smallest positive number in A. Then $A=d \cdot \mathbb{Z}$.

Proof:

1. $A \subseteq d \cdot \mathbb{Z}$: Need $(\forall a \in A)(a \in d \cdot \mathbb{Z})$. i.e. $d \mid a$. So, let $a=d q+r, 0 \leqslant r<d$ (note that this is positive because of the initial claim). $r=a-d q, a \in A$ and $d \in A$ and $d \cdot q \in A$, so r cannot be positive, so $r=0 \Longrightarrow a=d q \Longrightarrow d \mid a$.
2. $A \supseteq d \cdot \mathbb{Z}$: Immediate from $d \in A \Longrightarrow\{d, d+d, d+d+d, \ldots\}$ and $-d \in A \Longrightarrow\{-d,-d-d,-d-d-$ $d, \ldots\}$.

Definition: c is a linear combination of a and b if $(\exists x, y)(c=a x+b y)$
Example: $6=18 \cdot \underbrace{2}_{x}+30 \cdot \underbrace{-1}_{y}$
Theorem $2.6(\forall a, b)(\exists x, y)(a x+b y$ is a gcd of a and $b)$
Notation: $\forall A, B \subseteq \mathbb{Z}$

1. $A+B=\{a+b \mid a \in A, b \in B\}$
2. $A-B=\{a-b \mid a \in A, b \in B\}$
3. $A \backslash B=\{a \in A \mid a \notin B\}$

So, all linear combinations of a and b are $a \cdot \mathbb{Z}+b \cdot \mathbb{Z}$. Observation: $a \cdot \mathbb{Z}+b \cdot \mathbb{Z}$ is a module. i.e. the difference of two linear combinations of a and $b,(a x+b y)-(a u+b v)=a(x-u)+b(y-v)$ so $(\exists d)(a \mathbb{Z}+b \mathbb{Z}=d \mathbb{Z})$ so d is a linear combination of a, b because $d \in d \mathbb{Z}=a \mathbb{Z}+b \mathbb{Z}$.

Claim: d is the gcd of a and b.

Proof:

1. $d \mid a$ because $a=a \cdot 1+b \cdot 0$
2. $d \mid b$ similarly
3. let $e \mid a$ and $e \mid b$. Claim: $e \mid d . d \in a \mathbb{Z}+b \mathbb{Z} \Longrightarrow(\exists x, y)(d=a x+b y)$. So, $d|a \Longrightarrow e| a x$ and $d|b \Longrightarrow e| b y$ together imply $a \mid a x+b y=d$

2: Prove if both d and d^{\prime} satisfy the following then $d= \pm d^{\prime}$:

1. $d \mid a$ and $d \mid b$
2. $(\forall e)($ if $e \mid a$ and $e \mid b$ then $e \mid d)$

Definition: A prime is a positive integer $p \geqslant 2$ where $\operatorname{Div}^{+}(p)=\{1, p\}$
Definition: r has the prime property if $(\forall a, b)$ (if $r \mid a b$ then $r \mid a$ or $r \mid b$ and $r \neq \pm 1$).
Example: $6 \mid 3 \cdot 4$ so six does not have the prime property.
Note: 0 has the prime property. Also: if $a \geqslant 2$ and a is not prime, then a does not have the prime property.
Theorem 2.7 if $p \geqslant 2$ is a prime, then it has the prime property.
Q: The uniqueness of prime factorization (the fundamental theorem of arithmetic) is an immediate consequence.

Proof: Lemma: $\operatorname{gcd}(a k, b k)=k \cdot g c d(a, b)$. Let $d=\operatorname{gcd}(a, b)=a x+b y$. Need a $k d=g c d(a k, b k)$. Know that $k d \mid a k$ and $k d \mid b k$, so $d \mid a$ and $d \mid b$. If $e \mid a k$ and $e \mid b k$ then $e \mid d k$ because $d=a x+b y, d k=a k \cdot x+b k \cdot y$ since $e \mid$ both right terms.

Supposing $p \geqslant 2, p$ prime, $p \mid a \cdot b$, we need $p \mid a$ or $p \mid b$. WLOG, ${ }^{1}$ assume $p \nmid a$, and prove $p \mid b$. Then $\operatorname{gcd}(a \cdot b, p \cdot b)=b \cdot \operatorname{gcd}(a, p)$ by lemma. But that implies $\operatorname{gcd}(a, p)=1$ because $\operatorname{Div}^{+}(p)=\{1, p\}$. Since $p|\operatorname{gcd}(a b, p b), p| b$.

Q: Learn Euclid's Algorithm.
Proposition $2.8 a \mid b$ and $b \mid a \Longleftrightarrow a= \pm b$.
Proof: $\Leftarrow \sqrt{ }$. So for \Rightarrow :

$$
\begin{aligned}
& a \mid b: \exists k, b=a k \\
& b \mid a: \exists l, a b=b l
\end{aligned}
$$

$a=b l=a k l$.
$a-a k l=0, a=0 \Longrightarrow b=a k=a-0=0 \sqrt{ }$,
$a(1-k l)=0,1=k l \Longrightarrow k= \pm 1, b= \pm a \sqrt{ }$.
As a consequence, the gcd is unique up to sign.
Proof: Suppose d and d^{\prime} are both gcd's of a and b. Then

1. $d|a, d| b$.
2. d is a multiple of all common divisors, including $d^{\prime}: d^{\prime} \mid d$. Analogously, $d \mid d^{\prime} \Longrightarrow d= \pm d^{\prime}$.

Definition: a and b are relatively prime if $\operatorname{gcd}(a, b)=1$.
Definition: $a \equiv b \bmod m$ means $m \mid a-b$
Prove that mod is reflexive by $a \equiv a \bmod m$ via $(\forall x)(x \mid 0)$. Prove symmetric by $a \equiv b \bmod m \Longrightarrow b \equiv$ $a \bmod m$ via $(\forall x)(x|c \Longrightarrow x|-c)$. Transitive by $a \equiv b \bmod m$ and $b \equiv c \bmod m \Longrightarrow a \equiv c \bmod m$ via $m \mid x$ and $m|y \Longrightarrow m| x+y$ with $x=a-b$ and $y=b-c$.

Theorem 2.9 If $a=b \bmod m$ then $\underbrace{g c d(a, m)}_{d}=\underbrace{g c d(b, m)}_{d^{\prime}}$.

[^0]Proof: $m \mid a-b$.

$$
\operatorname{Div}(d)=\operatorname{Div}(a, m) \stackrel{?}{=} \operatorname{Div}(b, m)=\operatorname{Div}\left(d^{\prime}\right),
$$

so need to prove:

$$
\begin{aligned}
(\forall x)(x \in \operatorname{Div}(a, m) & \stackrel{?}{\Longleftrightarrow} x \in \operatorname{Div}(b, m)) \\
(x \mid a \text { and } x \mid m) & \stackrel{?}{\Longleftrightarrow}(x \mid b \text { and } x \mid m)
\end{aligned}
$$

\Rightarrow, need to prove: $x \mid b$ and $x \mid m$. Assume $x \mid a$ and $x \mid m$, need to prove $x \mid b$. Assume $a \equiv b(m), x|a, x| m$ D.C. $x \mid b$.

Proof: $m \mid a-b \exists y: a-b=m y$, then $b=a-m y$, put in x 's, $\Longrightarrow x \mid a-m y \sqrt{ } . \Leftarrow$ done the same way.
A residue class mod $m=\{x \mid x \equiv k\}$, number of residue classes $\bmod m$ is m. They are equivalence classes.
Corollary 2.10 If L is a residue class $\bmod m$ and $(\exists x \in L)(\operatorname{gcd}(x, m)=1)$ then $(\forall x \in L)(\operatorname{gcd}(x, m)=1)$
Proof: Thm 2.9
Definition: L is a reduced residue class $\bmod m$ if L is a residue class mod m and its members are relatively prime to m. Denote via $[a]_{m}$ for the residue class $a \bmod m$. The number of reduced residue classes mod m is called $\phi(m)$, called Euler's phi function.

So $\phi(m)$ is the \# of integers k in the interval $a \leqslant k \leqslant m$ such that $\operatorname{gcd}(k, m)=1$. Have $\phi(1)=1, \phi(2)=1$, $\phi(3)=2, \phi(4)=2, \phi(5)=4, \phi(6)=2$, etc.

If p is a prime, then $\phi(p)=p-1$.
*: $\operatorname{gcd}\left(a, p^{2}\right) \neq 1 \Longleftrightarrow p \mid a$
get that $\phi\left(p^{2}\right)=p^{2}-p . \phi\left(p^{3}\right)=p^{3}-p^{2}$, in general have

$$
\phi\left(p^{k}\right)=p^{k}-p^{k-1}=p^{k}\left(1-\frac{1}{p}\right)
$$

2: If $\operatorname{gcd}(a, b)=1$ then $\phi(a b)=\phi(a) \phi(b)$, called " ϕ is multiplicative." (Not totally multiplicative, just if gcd has this property.)

Q: $\sum_{d \mid m} \phi(d)=m$ (but notes slightly more difficult than usual s's)

$$
\sum_{d \mid 6} \phi(d)=\phi(1)+\phi(2)+\phi(3)+\phi(6)=6, \quad \sum_{d \mid 7} \phi(d)=\phi(1)+\phi(7)=7
$$

where $d \mid 6$ means summation over the positive divisors, etc.
Corollary 2.11 If $n=p_{1}^{k_{1}} \cdots p_{2}^{k_{s}}$ and the p_{i} are distinct primes, then

$$
\phi(n)=\prod_{i=1}^{s} \phi\left(p_{i}^{k_{i}}\right)=n \prod_{p \mid n}\left(1-\frac{1}{p}\right)
$$

p prime
Example: $\phi(90)=\phi(2 \cdot 9 \cdot 5)=\phi(2) \cdot \phi(9) \cdot \phi(5)=1 \cdot 6 \cdot 4=24=0-\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{5}\right)$, and $2\left(1-\frac{1}{2}\right) 9\left(1-\frac{1}{3}\right) 5\left(1-\frac{1}{5}\right)$.

Theorem $2.12 \sum_{p} \frac{1}{p}=\infty$
2: Prove that $\inf _{n} \frac{\phi(n)}{n}=0$. Note: $\lim _{n \rightarrow>\inf } \frac{\phi(p)}{p}=1$ because $\frac{p-1}{p}=1-\frac{1}{p}=1$
Claim: $x^{2} \equiv x \bmod 2$.
Proof: $2 \hat{\dot{\mid}} x^{2}-x=x(x-1) \Longrightarrow$ one of them even.
Claim: $x^{3} \equiv x \bmod 3$
Proof: $3 \mid x^{3}-x=x\left(x^{2}-1\right)=x(x-1)(x+1)=(x-1) x(x+1)$
Claim: $x^{5} \equiv x \bmod 5$
Proof: $5 \mid x^{5}-x=x\left(x^{4}-1\right)=x\left(x^{2}+1\right)\left(x^{2}-1\right)=(x-1) x(x+1)\left(x^{2}+1\right)$, instead if $x^{2}+1$ we would wish $x^{2}-4=(x-2)(x+2)$, but now $x^{2}+1 \equiv x^{2}-4 \bmod 5$.

Q: Prove in a similar manner: $x^{7} \equiv x(7), x^{11} \equiv x(11)$.
Theorem 2.13 (Fermat's Little Theorem) $x^{p} \equiv x \bmod p, p$ prime. ${ }^{2}$
(Whenever p written without comment, assume is prime.) Call theorem stated this way (1). An equivalent statement, (2), is

$$
(\forall x)(\forall p \text { prime })\left(\text { if } \operatorname{gcd}(x, p)=1 \text { then } x^{p-1} \equiv 1 \bmod p\right)
$$

Proof:

$(2) \Longrightarrow(1):$ If $\operatorname{gcd}(x, p)=1$, then $(2) \Longrightarrow x^{p-1} \equiv 1(p), x^{p} \equiv x(p)$. If $\operatorname{gcd}(x, p) \neq 1$, i.e. $p \mid x$, then $e \equiv 0(p), x^{p} \equiv 0(p)$.
$(1) \Longrightarrow(2)$: We know $x^{p} \equiv x(p) \Longrightarrow$ divide both sides by $x: x^{p-1} \equiv 1(p)$, because we are assuming $\operatorname{gcd}(x, p)=1 . x^{p} \equiv x(p), p\left|x^{p}-x=x\left(x^{p-1}-1\right), p\right| x \Longrightarrow p \mid x^{p-1}-1$, by the prime product property.

2: If $a x \equiv a y \bmod m$ and $\operatorname{gcd}(a, m)=1$ then $x=y \bmod m$.
Q: If $a x \equiv a y \bmod a m$ then $x \equiv y \bmod m$.
Theorem 2.14 (Euler-Fermat) If $\operatorname{gcd}(x, m)=1$ then $x^{\phi(m)} \equiv 1 \bmod m$.
(Note: $\lim _{p \rightarrow \infty} \frac{\phi(p)}{p}=1$)
Proof: Let $a_{1}, \ldots, a_{\phi(m)}$ be a set of representatives of all reduced residue classes.
Claim: $x a_{1}, \ldots, x a_{\phi(m)}$ is again a set of representatives of the reduced residue classes.
Proof: $(1)(\forall i)\left(\operatorname{gcd}\left(x a_{i}, m\right)=1\right)$, proof by $\operatorname{gcd}(x, m)=1$ and $\operatorname{gcd}\left(a_{i}, m\right)=1$.
$(2) i \neq j \Longrightarrow x a_{i} \neq x a_{j} \bmod m$. Contrapositive is: $x a_{i} \equiv x a_{j} \bmod m \Longrightarrow \quad$ (by ex.) $a_{i} \equiv a_{j} \bmod m$ $\Longrightarrow i=j$.
\Longrightarrow

$$
\prod_{i=1}^{\phi(m)} a_{i} \equiv \prod_{i=1}^{\phi(m)}\left(x a_{i}\right) \equiv x^{\phi(m)} \underbrace{\prod_{i=1}^{m} a_{i}}_{A} \bmod m
$$

get $x^{\phi(m)} A \equiv A \bmod m, \operatorname{gcd}(A, m)=1 \Longrightarrow$ by ${ }^{2} ., x^{\phi(m)} \equiv 1 \bmod m$

[^1]A sequence a_{0}, a_{1}, \ldots is periodic with period t if $(\forall n)\left(a_{n+t}=a_{n}\right) . t$ is a period, the period is the smallest positive period. Equivalent definition: t is a period if $(\forall k, l)$, if $k \equiv l(\bmod t)$ then $a_{k}=a_{l}$.
Q: The period is the gcd of all periods.
2: Prove that if a / b a fraction, $0<a<b, \operatorname{gcd}(b, 10)=1, \Longrightarrow a / b$ is a periodic decimal.
$a^{0}=1, a, a^{2}, \ldots \bmod m$, assume $\operatorname{gcd}(a, m)=1 . \phi(m)$ is a period of this sequence. $a^{\phi(m)} \equiv 1 \bmod m$ (Euler-Fermat).

If $k, l \geqslant 0, k \equiv l \bmod \phi(m)$ then $a^{k} \equiv a^{l} \bmod m$.
If p prime, $k, p \geqslant 0, k \equiv l \bmod p-1$, then $a^{k} \equiv a^{l} \bmod p$. In general, the period divides $\phi(m)$.
The period of the sequence $\left\{a^{k} \bmod m\right\}$ is called the order of $a \bmod m .($ Assume $\operatorname{gcd}(a, m)=1$.)
In other words, the order of $a \bmod m, \operatorname{ord}_{m}(a)$, is the smallest $k>0$ such that $a^{k} \equiv 1 \bmod m$. [EulerFermat tells us ord $m(a) \mid \phi(m)]$.

Ex: $\operatorname{ord}_{5}(2)=4, \operatorname{ord}_{7}(2)=3$.
Definition: a is a primitive root $\bmod p$ if $\operatorname{ord}_{p}(a)=p-1$.
Theorem 2.15 For any prime p, \exists a primitive root $\bmod p$
Ex: 2 is primitive root $\bmod 5,3$ is primitive root $\bmod 7$. This theorem is non-trivial, can find online, etc.
$10 \equiv 3 \bmod 7 \Longrightarrow 10$ primitive root $\bmod 7$.
$1 / 7=0.142857$, periodic. Let $A=142,857$, then $7 A=000,000$. Puzzle: 142,857 is the only 6 -digit number A such that $A, 2 A, \ldots, 6 A$ all have the same digits.
Q: $\frac{1}{p}$ is in decimal periodic; period is $\operatorname{ord}_{p}(10)$
2: 10 is a primitive root mod 17. (Note means $1 / 17=0 . \mathrm{BBB} .$. , where B has 16 digits.
2: 1. Definition of gcd of any number of integers.
2. Prove gcd exists, is repr. as a linear combination.
3. $\operatorname{gcd}(a, b, c)=\operatorname{gcd}(a, \operatorname{gcd}(b, c))$.

2.1 Linear congruences

Claim: $a x \equiv b \bmod m$ is solvable $\Longleftrightarrow \operatorname{gcd}(a, m) \mid b$.
Proof: 1. Necessity, i.e. $(\exists x)(\ldots) \Longrightarrow \operatorname{gcd} \ldots$... Obs: If $a \equiv b \bmod m$ and $r \mid m$ then $a \equiv b \bmod r$. Pf: transitivity of divisibilities, \otimes.

Proof: $d=\operatorname{gcd}(a, m), a x \equiv b(m) \Longrightarrow a x \equiv b(d), 0 \equiv b(d)$, so $d \mid b \quad \sqrt{ }$.
2. Sufficiency: $\operatorname{gcd} \ldots \Longrightarrow(\exists x)(\ldots) . d:=\operatorname{gcd}(a . m)$, assumption $d \mid b$. $\exists x_{0}, y_{0}, d=a x_{0}+m y_{0}, a x_{0} \equiv d$ $\bmod m . a \frac{b}{d} x_{0} \equiv \frac{b}{d} d=b(\bmod m)$, with $\frac{b}{d} x_{0}=x . \sqrt{ }$
Case $b=1: a x=1(\bmod m), x$ the multiplicative inverse of $a \bmod m\left(a^{-1} \bmod m\right)$. It exists \Longleftrightarrow $\operatorname{gcd}(a, m)=1$.

Simultaneous congruences:

$$
\begin{align*}
x \equiv 1(8)=>x & \equiv 1(2) \tag{1}\\
x & \equiv 5(7) \tag{2}\\
x \equiv 4(6)=>x & \equiv 4(2) \tag{3}
\end{align*}
$$

Not solvable, since (1) and (3) contradict each other. In general,

$$
\begin{array}{r}
x \equiv a(m) \\
x \equiv b(n) \tag{5}
\end{array}
$$

contradict each other if $a \neq b \bmod \operatorname{gcd}(m, n)$.

Corollary 2.16 If the system (4, 5) is solvable then $a \equiv b \bmod \operatorname{gcd}(m, n)$ so this is a necessary condition of solvability.
© It is also sufficient.
Corollary 2.17 If $\operatorname{gcd}(m, n)=1$ then $(4,5)$ is always solvable.
Theorem 2.18 (Chinese Remainder Theorem) Consider the system

$$
\begin{align*}
x & \equiv a_{1}\left(m_{1}\right) \tag{6}\\
& \vdots \\
x & \equiv a_{k}\left(m_{k}\right) \tag{7}
\end{align*}
$$

If the m_{i} are pairwise relatively prime, then a solution exists, and solution is unique modulo $N:=m_{1} \cdots m_{k}$.
Example: System

$$
\begin{aligned}
& x \equiv 2(5) \\
& x \equiv 1(6) \\
& x \equiv 3(7)
\end{aligned}
$$

by CRT $\exists x$ satisfying these. Take $42,35,30, x=42 A+35 B+30 C$, $\bmod 5$ gives $42 a \equiv 2$, mod 6 gives $35 B \equiv 1, \bmod 7$ gives $30 C \equiv 3$. A exists because $\operatorname{gcd}(42,5)=1$, etc. Literature for the CRT is Wikipedia, very good description of theorem and proof.
Theorem 2.19 For system (6-7), if $\exists x$ it is unique modulo $\operatorname{lcm}\left(m_{1}, \ldots, m_{k}\right)=: L$, where lcm stands for "least common multiple"
Proof: Suppose

$$
\begin{aligned}
y & \equiv a_{1}\left(m_{1}\right) \\
& \vdots \\
y & \equiv a_{k}\left(m_{k}\right)
\end{aligned}
$$

Need to prove: $x \equiv y \bmod L$, i.e. $L \mid x-y$.
Q: Define lcm in full analogy with definition of gcd, prove \exists.
Proof: $L \mid b \Longleftrightarrow(\forall i)\left(m_{i} \mid b\right)$ by definition of $1 \mathrm{~cm} . \sqrt{ }$
Theorem 2.20 (Euclid) \exists infinitely many primes.
Proof: (Euclid) Assume by contradiction that p_{1}, \ldots, p_{k} are all the primes ($p_{1}=2$). Let $N=p_{1} p_{2} \cdots p_{k}$. Then $N+1 \geqslant 2 \Longrightarrow \exists \operatorname{prime} p \mid N+1 \Longrightarrow(\exists i)\left(p=p_{i}, N \equiv-1 \bmod p, N \equiv 0 \bmod p_{i}\right.$, so $1 \equiv 0 \bmod p$, contradiction.
Example: Find $x: x^{2} \equiv 1$ (187) but $x \not \equiv \pm 1(187)$. Via CRT:

$$
\begin{array}{r}
x \equiv 1(17) \\
x \equiv-1(11)
\end{array}
$$

Solution in the form: $x=A * 17+B * 11$.

$$
\begin{array}{rc}
B * 11 \equiv 1(17) & B \equiv-3(17) \\
A * 17 \equiv-1(11) & 6 A \equiv-1(11) \\
& 12 A \equiv-2(11) \\
& A \equiv-2(11)
\end{array}
$$

So, $x=-2 * 17+-3 * 11$ and $x=-67$. Check: $(67)^{2} \equiv 1(187)$. That's $-67 \equiv 1(17)$ and $-67 \equiv-1(11)$ so it's good!

3 Counting

An n-set is a set of n elements, $[n]=\{1, \ldots, n\}$. The $\# k$-subset of an n-set is $\binom{n}{k}=\frac{n!}{k!(n-k)!}$.
" n choose k " In poker you get five cards, so $\binom{52}{5}=\frac{52 * 51 * 50 * 49 * 48}{5!}$. The bottom divides the sequences into equivalence classes based on the "same cards". Remember to make life easy when you can: $\binom{n}{3}=\frac{n!}{3!(n-3)!}=$ $\frac{n(n-1)(n-2)}{3!}$.

A permutation of a set A is an $A \rightarrow A$ bijection. The $\#$ of permutations of an n-set is $n!$. Will be taking $0^{0}=1$.
事: $\lim _{x, y \rightarrow 0} x^{y}=$ mostly 1 .
Pascal's triangle, Pascal's identity is

$$
\binom{n+1}{k+1}=\binom{n}{k}+\binom{n}{k+1}
$$

Combinatorial proof: $\binom{n}{k}$ is $\#(k+1)$ subsets containing special element, $\binom{n}{k+1}$ is $\#(k+1)$-subsets avoiding special elements... and get it from there, then gives binomial theorem.

READ: binomial theorem: $(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{n-k} y^{k}$.

3.1 Asymptotic notation

Definition: For a sequence $\left\{a_{i}\right\}, \lim _{n \rightarrow \infty} a_{n}=A$ means $(\forall \epsilon>0)(\exists N)(\forall n>N)\left(\left|a_{n}-A\right|<\epsilon\right)$. Interpret as "for all sufficiently large n, a_{n} is within a threshold distance of A." For an interval of size ϵ, as N gets large the difference between a_{n} and A gets smaller.

Definition: $a_{n} \sim b_{n}$ are asymptotically equal if $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=1$
False version is just the negation of all quantifiers OR no limit exists.
Examples:

1. $a_{n}=3 n^{2}+5 n+100$ and $b_{n}=3 n^{2}$ are asymptotically equal. This is because $\frac{3 n^{2}+5 n+100}{3 n^{2}}=1+\frac{5 n}{3 n^{2}}+\frac{100}{3 n^{2}} \approx$ 1.
2. Stirling's formula:(memorize) $n!\sim\left(\frac{n}{e}\right)^{n} \sqrt{2 \pi n}$
3. $\pi(x)=\#$ primes $\leqslant x$. So $\pi(4)=2, \pi(10)=4, \pi(100)=25$, etc. One of the biggest theorems in math:

Theorem 3.1 (Prime Number Theorem)

$$
\pi(x) \sim \frac{x}{\ln x}
$$

Proved in 1896 by Jacque Hadamard and Pierre de la Vallée Poussin. ${ }^{4}$
When is $a_{n} \sim b_{n}$? Let

$$
c_{n}=\left\{\begin{array}{l}
\frac{a_{n}}{b_{n}}: b_{n} \neq 0 \\
*: a_{n} \neq 0, b_{n}=0 \\
1: a_{n}=b_{n}=0
\end{array}\right.
$$

Say $a_{n} \sim b_{n}$ if $\lim c_{n}=1$. Under this definition, \sim is reflexive (proved), symmetric (proved), and transitive (\otimes)

Definition: $f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0}$ is a polynomial of degree n if $a_{n} \neq 0$.

[^2]Note that $f(x) \sim a_{n} x^{n}$. Also, $\lim _{x \rightarrow 0} \frac{\ln (1+x)}{x}=1$.
2: $\sqrt{1+\frac{1}{n}}-1 \sim$?
Example: $\binom{n}{3}=\frac{n(n-1)(n-2)}{3!} \sim \frac{n^{3}}{6}$
Q: $a_{n} \sim b_{n}>1 \Longrightarrow \ln a_{n} \sim \ln b_{n}$? (Answer is "almost".. find condition.)
Pascal's triangle, define floor $\left\rfloor\right.$ and ceiling $\left\rceil\right.$, from Pascal's triangle $\binom{n}{\left\lfloor\frac{n}{2}\right\rfloor}=\binom{n}{\left[\frac{n}{2}\right\rceil}$. Have

$$
(1+1)^{n}=\binom{n}{0}+\binom{n}{1}+\cdots+\binom{n}{n}=2^{n}
$$

$\Longrightarrow\binom{n}{k}<2^{n} \forall k$. So $2^{n}>\binom{n}{\left\lfloor\frac{n}{2}\right\rfloor}>\frac{2^{n}}{n+1}, \frac{2^{n}}{n}<\binom{n}{\left\lfloor\frac{n}{2}\right\rfloor}<2^{n}$. This all works because it relies on the rule that the biggest must be bigger than the average.
Q: $\binom{n}{\left\lfloor\frac{n}{2}\right\rfloor} \sim c \frac{s^{n}}{\sqrt{n}}, c=$? Use Stirling's formula..
Claim: O_{n} is odd subsets, E_{n} even subsets, then $\left|O_{n}\right|=\left|E_{n}\right|$, if $n \geqslant 1$.
Proof: $0^{n}=(1-1)^{n}=\binom{n}{0}=\left[\binom{n}{0}+\binom{n}{2}+\ldots\right]-\left[\binom{n}{1}+\binom{n}{3}+\ldots\right]$. Combinatorial proof, use a bijection: $[n]=\{1, \ldots, n\}$, for $A \subseteq[n]$, odd $\Longrightarrow A=[n] \backslash A$. For n odd, take one element out, etc..

$$
\begin{aligned}
O_{2 k} & =O_{2 k-1}+E_{2 k-1} \\
E_{2 k} & =E_{2 k-1}+O_{2 k-1}
\end{aligned}
$$

Make a function f which toggles whether the element is in your subset of not:

$$
f:\left\{\begin{array}{l}
f(A)=A \backslash\{n\}: n \in A \\
f(A)=A \cup\{n\}: n \notin A
\end{array}\right.
$$

f is a bijection between even and odd sets (for $n \geqslant 0$).
Note $\sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor}\binom{n}{2 k}=2^{n=1}$
彩: Consider $\sum_{k=0}^{\left\lfloor\frac{n}{4}\right\rfloor}\binom{n}{4 k}=$? For what n is it 2^{n-2} ?
気: Show that $\left|\sum_{k=0}^{\left\lfloor\frac{n}{3}\right\rfloor}\binom{n}{3 k}-\frac{2^{n}}{3}\right|<1$.
Have $\binom{x}{3}=\frac{x(x-1)(x-2)}{6}$, even for complex numbers. Define $\binom{n}{k}=0$ for $k>n$, then

$$
(1+z)^{n}=1+\binom{n}{1} z+\binom{n}{2} z^{2}+\cdots+\binom{n}{n} z^{n}+\binom{n}{n+1} z^{n+1}=\sum_{k=0}^{\infty}\binom{n}{k} z^{k}
$$

and Newton's Binomial Theorem is

$$
(1+z)^{x}=\sum_{k=0}^{\infty}\binom{x}{k} z^{k}
$$

For all complex numbers x, assuming $|z|<1$. Have

$$
\frac{1}{1-z}=1+z+z^{2}+\cdots=(1-z)^{-1}=\sum_{k=0}^{\infty} \underbrace{(-1}_{(-1)^{k}} \begin{array}{c}
k
\end{array})(-z)^{k}=\sum_{k=0}^{\infty} z^{k}
$$

where

$$
\binom{-1}{k}=\frac{(-1)(-2) \cdots(-k)}{k!}=(-1)^{k}
$$

This is how many way to pick $k x$'s, $l y$'s, and $m z$'s. Also, don't forget that $\frac{1}{1+t}=1-t+t^{2}-t^{3}+\cdots$. HW: show

$$
\frac{1}{\sqrt{1-z}}=(1-z)^{-\frac{1}{2}}=\sum_{k=0}^{\infty}\binom{-\frac{1}{2}}{k}(-z)^{k}
$$

3.2 Generating functions

Power series are the generating functions of the sequence a_{n} :

$$
\begin{aligned}
f(x) & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
f(x)+g(x) & =\sum_{n=0}^{\infty}\left(a_{n}+b_{n}\right) x^{n} \\
f(x) * g(x) & =\sum_{n=0}^{\infty} c_{n} x^{n} \quad\left(\text { where } c_{n}=\sum_{k=0}^{n} a_{k} b_{n-k}\right) \\
f^{\prime}(x) & =\sum_{n=1}^{\infty} a_{n} n x^{n-1}
\end{aligned}
$$

Look at fib-gen, where the coefficients are the Fibonacci numbers. So, $f(x)=\sum_{n=0}^{\infty} F_{n} x^{n}$. Reduce, pulling out factors and simplifying:

$$
\begin{array}{r}
f(x)=F_{0}+F_{1} x+\sum_{n=2}^{\infty}\left(F_{n-1}+F_{n-2}\right) x^{n} \\
f(x)=x+\sum_{n=2}^{\infty} F_{n-1} x^{n}+\sum_{n=2}^{\infty} F_{n-2} x^{n} \\
f(x)=x+x * f(x)+x^{2} * f(x) \\
f(x)=\frac{x}{1-x-x^{2}}
\end{array}
$$

Theorem 3.2 (Trinomial)

$$
(x+y+z)^{n}=\sum_{k, l, m \geqslant 0, k+l+m-n}\binom{n}{k, l, m} x^{k} y^{l} z^{m}
$$

where $\binom{n}{k, l, m}=\frac{n!}{k!!!m!}$.
For $\binom{n}{k, l, m}$, think of $n!$ total ways to distribute the cards, divided by the ways that $k!, l!, m$! could have been distributed. Note that $k+l+m=n$.

Theorem 3.3 (Multinomial)

$$
\left(x_{1}+\cdots+x_{k}\right)^{n}=\sum_{t_{1}, \ldots, t_{k} \geqslant 0, t_{1}+\cdots+t_{k}=n}\left(\frac{n!}{\prod_{i=1}^{k} t_{i}!} x_{1}^{t_{1}} \cdots x_{k}^{t_{k}}\right)
$$

Claim the number of terms in the k-nomial theorem is $\binom{n+k-1}{k-1}$. Lots of reasoning here on why this would be so: looking for number of solutions to the equation $x_{1}+\cdots+x_{k}=n$, for $x_{i} \geqslant 0, x_{i} \in \mathbb{Z}$. Easier question is same for $y_{1}+\cdots+y_{k}=n$, $y_{i} \geqslant 1$, by looking at putting $k-1$ dividers in n places, get $\binom{n-1}{k-1}$. Now, let $y_{i}:=x_{i}+1, y_{i} \geqslant 1, \sum y_{i}=n+k$, get $\binom{n+k-1}{k-1}$
Definition: $a_{n} \sim b_{n}$ if $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=1$, replace $\frac{0}{0}$ by 1 .
Definition: $a_{n}=o\left(b_{n}\right)$, if $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=0, \operatorname{abd} \frac{0}{0}:=0$.
In this notation, $a_{n}=o(1)$ means $\lim _{n \rightarrow \infty} a_{n}=0$.
Obs: $a_{n} \sim b_{n} \Longleftrightarrow a_{n}=b_{n}(1+o(1))$, meaning $\exists c_{n}, a_{n}=b_{n}\left(1+c_{n}\right)$, where $c_{n}=o(1)$.
Note that $a_{n}=o\left(c_{n}\right), b_{n}=o\left(c_{n}\right) \nRightarrow a_{n} b_{n}=o\left(c_{n}\right)$, i.e. $a_{n}=b_{n} \sqrt{n}, c_{n}=n$.
Also, $a_{n}=o\left(b_{n}\right), a_{n}=o\left(c_{n}\right) \nRightarrow a_{n}=o\left(b_{n}+c_{n}\right)$, but want this to be true, it is under condition $b_{n}, c_{n}>0$ (or both negative).
\&: Is this statement T or F ?
Definition: $a_{n}=O\left(b_{n}\right)$ if $(\exists C)$ (for all sufficiently large n), i.e. $\left(\exists n_{0}\right)\left(\forall n \geqslant n_{0}\right)$. This is equivalent to $\left|a_{n}\right| \leqslant C\left|b_{n}\right|$ for some C.) Say "the order of magnitude of a_{n} is \leqslant the order of magnitude of b_{n}."
\&: $\frac{100 n^{2}-7}{5 n+8}=O(n)$
If $a_{n}=o\left(b_{n}\right)$, then $a_{n}=O\left(b_{n}\right)$
Definition: $a_{n}=\Omega\left(b_{n}\right)$ if $b_{n}=O\left(a_{n}\right)$.
Definition: $a_{n}=\Theta\left(b_{n}\right)$ if $a_{n}=O\left(b_{n}\right)$ and $a_{n}=\Omega\left(b_{n}\right)$, i.e. $(\exists C, c>0)\left(\exists n_{0}\right)\left(\forall n \geqslant n_{0}\right)\left(c\left|b_{n}\right| \leqslant\left|a_{n}\right| \leqslant C\left|b_{n}\right|\right)$, say " a_{n} and b_{n} have the same order of magnitude." We have to have "for n sufficiently large" here because $a_{n}=0, b_{n} \neq 0$ could happen at a finite number of places or "within constant factors of each other."

Definition: a_{n} polynomially bounded if $(\exists C)\left(a_{n}=O\left(n^{C}\right)\right.$.
Definition: a_{n} grows exponentially if $(\exists c>0)\left(a_{n}=\Omega\left(e^{n^{c}}\right)\right)$
Theorem 3.4 If a_{n} is polynomially bounded and b_{n} grows exponentially then $a_{n}=o\left(b_{n}\right)$.
In fact, $\frac{b_{n}}{a_{n}}$ grows exponentially (assuming $a_{n} \neq 0$).
Theorem 3.5 $\ln x=o(x)$, i.e. $\lim _{x \rightarrow \infty} \frac{\ln x}{x}=0$.
Proof: L'Hôpital's rule, get

$$
\frac{(\ln x)^{\prime}}{x^{\prime}}=\frac{1 / x}{1}=\frac{1}{x} \rightarrow 0
$$

In fact $\forall c>0, \ln x=o\left(x^{c}\right)$, do by re-defining x, same kind of proof w/ LHR.
Now, how to prove that $(\ln x)^{100}=o(x)$? Say

$$
\left(\frac{\ln x}{100 \sqrt{x}}\right)^{100} \Longrightarrow \frac{(\ln x)^{100}}{x} \rightarrow 0
$$

Theorem $3.6(\forall c)(c>0)\left(\ln x=o\left(x^{c}\right)\right)$

3.3 Polynomial vs. exponential growth

Theorem 3.7 $\forall C, C>0, n^{C}=o\left(e^{n^{c}}\right)$, ex: $n^{1000}=o\left(e^{100} \sqrt{n}\right)$
Proof: $\ln x={ }^{100} \sqrt{n},(\ln x)^{100000}=o(x) \checkmark$
Q: $\forall c, d>0,(1+c)^{n^{d}}$ grows exponentially. Meaning: $\exists f, g>0$ such that $e^{n^{f}}<(1+c)^{n^{d}}<e^{n^{g}}$ for all sufficiently large n
Ω notation read " a_{n} grows at least exponentially." But O notation read a_{n} "is" exponential, even though behaves more like an inequality.

Q: Θ is an equivalence relation on sequences.
Theorem 3.8 If $L=\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}$ exists, then

1. If $L=1$ then $a_{n} \sim b_{n}$
2. If $L=0$ then $a_{n}=o\left(b_{n}\right)$
3. If $L= \pm \infty$ then $b_{n}=o\left(a_{n}\right)$
4. If $L \neq 0, \neq \pm \infty$, then $a_{n}=\Theta\left(b_{n}\right)$

Proof:
Theorem 3.9 Suppose $a_{n} \geqslant 1$. a_{n} is polynomially bounded $\Longleftrightarrow \ln a_{n}=O(\ln n)$.
Proof:
$\ln n=\Theta\left(\log _{2} n\right)$ because $\frac{\log _{2} n}{\ln n}=\frac{1}{\ln 2}$. If $\pi(x)=$ number of primes $\leqslant x$, then $\pi(x)=o(x)$, get $x^{99}=o\left(\frac{x}{\ln x}\right)$, because PNT gives $\pi(x) \sim \frac{x}{\ln x}>\frac{x}{x^{01}}$

Theorem 3.10 If $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}$ exists $:=L$, have $\binom{2 n}{n}=o\left(4^{n}\right)$, because $\binom{2 n}{n}=\Theta\left(\frac{4^{n}}{\sqrt{n}}\right)$ (using Stirling's formula)
Proof:
Theorem 3.11 If $a_{n}=\Theta\left(b_{n}\right)$ and $a_{n}, b_{n} \rightarrow \infty$, then $\ln a_{n} \sim \ln b_{n}$
Suggests writing o with an "ear" to distinguish from O. o and O are notation from Landau $\sim 1900, \Omega, \Theta$ from Don Knuth. Notation not used here is $\omega\left(b_{n}\right)=a_{n}$ if $b_{n}=o\left(a_{n}\right)$.

4 Finite Probability Spaces

Sample space $=$ set of all possible outcomes of the experiment. Each outcome: elementary event. Usually call Ω the sample space, A an event, $A \subseteq \Omega$.

Definition: 1. Non-empty finite set Ω, the sample space.
2. A probability distribution P over $\Omega: P: \Omega \rightarrow \mathbb{R}$. such that
(a) $(\forall x \in \Omega)(P(x)>0)$
(b) $\sum_{x \in \Omega} P(x)=1$

Elements of Ω are "elementary events", then (Ω, P) is a finite probability space.

If $(\forall x \in \Omega)\left(P(x)=\frac{1}{|\Omega|}\right)$ then the space is uniform distribution.
An event is $A \subseteq \Omega, P(A)=\sum_{x \in A} P(x)$. In particular, $P(\varnothing)=0, P(\Omega)=1$.
Q: If $A_{1}, \ldots, A_{k} \subseteq \Omega$, then $P\left(A_{1} \cup \ldots \cup A_{k}\right) \leqslant \sum_{i=1}^{k} P\left(A_{i}\right)$, union bound.
Equality holds \Longleftrightarrow the A_{i} are pairwise disjoint, i.e. they are mutually exclusive.
Q: $P(A \cup B)+P(A \cap B)=P(A)+P(B)$ (modular equation)

4.1 Conditional probability

$A, B \subseteq \Omega, B \neq \varnothing$, then

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

is the probability of A conditional on B.
Definition: $A, B \subseteq \Omega$ are independent if $P(A \cap B)=P(A) P(B)$.
Definition: The trivial events are \varnothing, Ω.
Q: If A is trivial then $(\forall B)(A, B$ are independent $)$.
Consequence: if $B \neq \varnothing$ then A, B are independent $\Longleftrightarrow P(A)=P(A \mid B)$.
Theorem 4.1 (Complete probability) For a partition $\Omega=B_{1} \uplus \cdots \uplus B_{k}, B_{i} \neq \varnothing$, \uplus is "disjoint union",

$$
P(A)=\sum P\left(A \mid B_{i}\right) P\left(B_{i}\right)
$$

Proof: Have

$$
P\left(A \mid B_{i}\right) P\left(B_{i}\right)=\frac{P\left(A \cap B_{i}\right)}{P\left(B_{i}\right)} P\left(B_{i}\right)=P\left(A \cap B_{i}\right)
$$

$\Omega=B_{1} \uplus \cdots \uplus B_{k}, A=\left(A \cap B_{i}\right) \uplus \cdots \uplus\left(A \cap B_{k}\right)$.
Proof of causes: Say we know $P(S \mid B)=90 \%, P(S)=5 \%, P(B)=2 \%$.
Q: What is $P(B \mid S)$?

$$
P(B \mid S)=\frac{P(B \cap S)}{P(S)}=\frac{P(B) P(S \mid B)}{P(S)}=\frac{0.02 \cdot 0.9}{0.05}=\frac{2}{5} \cdot 0.9=0.36
$$

so 36%. Note that this used $P(B \cap S)=P(B) * P(S \mid B)$.
Definition: A, B positively correlated if $P(A \cap B)>P(A) P(B)$, negatively correlated if $P(A \cap B)<$ $P(A) P(B)$.

Example: Roll a die, A event it's prime, B event it's odd. Then $P(A)=\frac{1}{2}, P(B)=\frac{1}{2}, P(A \cap B)=\frac{1}{3} \Longrightarrow$ positively correlated.

Q: For what n are the following events independent: $A: 2|x, B: 3| x$. Yes if $6 \mid n$. Pick a number x from $\{1, \ldots, n\}$. For $n=8, P(A)=\frac{1}{2}, P(B)=\frac{1}{4}, P(A \cap B)=\frac{1}{8}=P(A) P(B)$.

If P is uniform, then

$$
P(A)=\sum_{x \in A} \underbrace{P(x)}_{\frac{1}{|\Omega|}}=\frac{|A|}{|\Omega|},
$$

i.e. "\# of good cases" /"\# of all cases".

Experiment: n coin flips, get an outcome such as HTTHTTT, $|\Omega|=2^{n}$.
Deal 5 cards from standard deck of 52 cards, a "poker hand", then $|\Omega|=\binom{52}{5}$.
For events $A, B, C \subseteq \Omega, P(A \cap B \cap C)=P(A) P(B) P(C)$ plus pairwise independent. Without this last bit, can have $A=B$ non-trivial and $C=\varnothing$, holds but not pairwise independent.

Q: If A, B, C independent, then

- $A, B \cup C$ also independent,
- $A, B \cap C$ also independent,
- $A, B \backslash C$ also independent.

Means A, B, \bar{C} independent (where $\bar{C}=\Omega \backslash C$).
Definition: $A_{1}, \ldots, A_{k} \subseteq \Omega$ are independent if $\forall I \subseteq[k]$,

$$
P\left(\bigcap_{i \in I} A_{i}\right)=\prod_{i \in I} P\left(A_{i}\right),
$$

2^{k} conditions. Turns out 2^{k} conditions actually $2^{k}-k-1$. (Need only for $|I| \geqslant 2$, it is automatically satisfied for $|I| \leqslant 1$.)

$$
\begin{aligned}
& \text { If }|I|=1 \text {, singleton, } I=\{i\}, \bigcap_{j \in I} A_{j}=A_{i} . \\
& \text { If } I=\varnothing, \prod_{i \in \varnothing} \text { anything }=1 . \bigcap_{i \in \varnothing} A_{i}=\Omega .
\end{aligned}
$$

Q: Experiment: n coin flips. Space: uniform. $A_{i}=$ "ith coin comes up heads" $\Longrightarrow A_{1}, \ldots, A_{n}$ are independent, $P\left(A_{i}\right)=\frac{1}{2}$.

4.2 Random variables

Function $X: \Omega \rightarrow \mathbb{R}$. The expected value of X is

$$
E(X)=\sum_{x \in \omega} X(x) P(x)
$$

the weighted average of outcomes. Over a uniform space,

$$
E(X)=\sum X(x) \frac{1}{|\Omega|}=\frac{\sum X(x)}{|\Omega|}
$$

the simple average.
2: $\min X \leqslant E(X) \leqslant \max (X)$
Q: If $X, Y: \Omega \rightarrow \mathbb{R}$, then $E(X+Y)=E(X)+E(Y)$.
Have $E(c X)=c E(X)$ for $c \in \mathbb{R}$, so

Theorem 4.2 (Linearity of expectation) For $a_{i} \in \mathbb{R}, X_{i}: \Omega \rightarrow \mathbb{R}$,

$$
E(\underbrace{\sum_{i=1}^{k} a_{i} X_{i}}_{\text {linear comb. }})=\sum_{i=1}^{k} a_{i} E\left(X_{i}\right)
$$

or if $X=c_{1} Y_{1}+c_{2} Y_{2}+\cdots$ then $E(X)=c_{1} E\left(Y_{1}\right)+c_{2} E\left(Y_{2}\right)+\cdots$.
Theorem 4.3

$$
E(x)=\sum_{r \in R} r P(X=r),
$$

but r really \in range (X), because if not the probability is 0 .
Why? " $X=r$ " is an event, namely $\{x \in \Omega \mid X(x)=r\}=X^{-1}(r)$. Anyhow, proof is .
Definition: The indicator variable of event A is

$$
\vartheta_{A}(x)=\left\{\begin{array}{l}
1 \text { if } x \in A \\
0 \text { if } x \notin A
\end{array}\right.
$$

If $n=|\Omega|$, the $\#$ events $=2^{n}, \#(0,1)$-random variables (indicator variables) $=2^{n}$. Every random variable that takes values 0,1 is the indicator variable of an event: $A=Y^{-1}(1), Y=\vartheta_{A}$,

$$
\left.E\left(\vartheta_{A}\right)=1 \cdot P\left(\vartheta_{A}\right)=1\right)+0 \cdot P\left(\vartheta_{A}=0\right)=P(A)
$$

This is very important: $E\left(\vartheta_{A}\right)=P(A)$, i.e. the event " $\vartheta_{A}=1$ " is A.
For X : \# heads in n coin flips,

$$
E(X)=\sum_{r=0}^{n} r P(X=r)=\sum_{r=0 n} \frac{r\binom{n}{r}}{2^{n}}=\frac{n}{2}
$$

the last step by intuition about coin flips. (Notation: $(X=r)$ means $\{a \mid X(a)=r\})$. Can prove this intuition by knowing $r\binom{n}{r}=n\binom{n-1}{r-1}$ (sum above

$$
=n \frac{1}{2^{n}} \sum_{r=1}^{n}\binom{n-1}{r-1}=n \frac{2^{n-1}}{2^{n}}=\frac{n}{2} .
$$

For Y_{i} the indicator of event ith coin is $\mathrm{H}, X=\sum Y_{i}$,

$$
E(X)=\sum E\left(Y_{i}\right)=\sum_{i=0}^{n} P\left(Y_{i}\right)=\frac{n}{2}
$$

so indicator functions nicer.

5 Graph Theory

A graph is a set of vertices and edges, for the moment unordered pairs of vertices, called an undirected graph. Relation on V is adjacency: $v, w \in V$ are adjacent if $\{v, w\} \in E$. The degree of vertex x is $\#$ of vertices adjacent to $x . G$ is regular of degree k if every vertex has degree k. For $k=1$ it's pairs of points; for $k=2$ it's a disjoint union of cycles, and for $k=3$ it's already an infinite set of graphs (trivalent).

Can do some work, convince yourself that:

Theorem 5.1 If G is regular of degree 3, then $|V|$ is even.
Proof:

$$
\sum_{x \in V} \operatorname{deg}(x)=2 m
$$

where m will always stand for $|E|$.
Call the fact that $\sum_{x \in V} \operatorname{deg}(x)=2 m$ the "handshake theorem." Call K_{n} the complete graph on n vertices, $m=\binom{n}{2} \cdot \bar{K}_{n}$ the empty graph, $m=0$. For every graph, $0 \leqslant m \leqslant\binom{ n}{2}$.

The complement of $G=(V, E)$ is $\bar{G}=(V, \bar{E})$, where $\{x, y\} \in \bar{E} \Longleftrightarrow x, y \in V, x \neq y$, and $\{x, y\} \notin E$.
Bipartite graph: vertices can be colored red and blue such that adjacent vertices never have the same color. Ex: 6 vertices in a hexagon, put in 3 diagonals intersecting at center. A bipartite graph cannot contain a cycle of length 3 , i.e. $K_{3}=C_{3}$. Cycle C_{n} is bipartite $\Longleftrightarrow n$ is even. So, generalization:

Theorem 5.2 G is bipartite $\Longleftrightarrow G$ contains no odd cycles.
We've done "only if" step. Walk of length n in a graph: $v_{0}-v_{1}-\ldots-v_{n}$ such that $\left\{v_{i-1}, v_{i}\right\} \in E, i=1, \ldots, n$. A path in E is a walk without repeated vertices. Write the number of walks of length k as $\partial_{n} K_{n}$ (in the complete graph). If G is regular of degree d, the $\#$ walks of length k is $n d^{k}$. The number of paths of length k is $n(n-1) \cdots(n-k) / 2$.

The complete bipartite graph $K_{k, l}$ looks like a line of k red next to a line of l blue, edge between every red and blue. $n=k+l, m=k l$.

Definition: An isomorphism between $G=(V, E)$ and $H=(W, F)$ is a bijection $f: V \rightarrow W$ which preserves adjacency: $\left(\forall v_{1}, v_{2} \in V\right), v_{1} \sim_{G} v_{2} \Longleftrightarrow f\left(v_{1}\right) \sim_{H} f\left(v_{2}\right)$.

Definition: G and H are isomorphic if $\exists f: G \rightarrow H$ an isomorphism.
It's an open problem whether you can prove non-isomorphism in polynomial time. A graph that is often used as a counterexample is Petersen's graph:

Length of shortest cycle is girth, diameter is $\max _{x, y \in V} \operatorname{dist}(x, y)$, distance (x, y) is length of shortest path from x to y (∞ if \nexists such path). Petersen's graph has girth 5 , diameter 2 , regular of degree 3 .
*: If G has girth 5 and is regular of degree r then $n \geqslant r^{2}+1$.
Q: If G has diam=2 and is regular of $\operatorname{deg}=r$ then $n \leqslant r^{2}+1$.
Gives a funky graph (get fm someone),
Q: This is isomorphic to Petersen's graph.

Definition: $y \in V$ is accessible from $x \in V$ if $\exists x \leftrightarrow y$ path.
x acc y, x acc $y \Longrightarrow y$ acc x, transitive:
Q: Prove: if $\exists x \ldots y$ walk then $\exists x \ldots y$ path.
Definition: The equivalence classes of "accessibility" are the connected components of G.
Definition: G is connected if $\forall x, y, x$ acc y, i.e. there is just 1 connected component
Definition: G is a tree if G is connected and has no cycles.
Example: P_{n}, line of n nodes, $m=n-1$.
Example: star_{n}, one node in middle, $n-1$ around it in circle, connected to center node. $m=n-1$.
Proof: By induction on n. Wrong proof: $n-1$ vertices, just add one more. But:
Lemma 5.3 (1) Every tree has a vertex of degree $1(n \geqslant 2)$
I.H.: true for $n-1$ vertices, D.C. ". Let x be a vertex of degree 1 in tree T with n vertices. Remove it: get graph T^{\prime}, has $n-1$ vertices, T has no cycles, T^{\prime} is connected.
Lemma 5.4 (2) If G is connected, $\operatorname{deg}(x)=1$, then $G \backslash x$ is connected. (
Say a legal coloring is $f: V \rightarrow\{$ colors $\}$ such that $(\forall x, y \in V)(x \sim y \Longrightarrow f(x) \neq f(y))$. G is k-colorable if \exists a legal coloring with $\leqslant k$ colors. The chromatic number $\chi(G):=\min \{k \mid G$ is $k-$ colorable $\}$. A graph is bipartite \Longleftrightarrow 2-colorable. $\chi(G)=1 \Longleftrightarrow G=\bar{K}_{n}, \chi\left(K_{n}\right)=n$, Do $\chi(G)=n \Longleftrightarrow G=K_{n}$.

Theorem 5.5 (Kuratowski's Theorem) G is planar $\Longleftrightarrow G$ has no K_{5} or $K_{3,3}$.
Definition: A clique is a complete subgraph. $\omega(G)$ is the size of the largest clique. $\chi(G) \geqslant \omega(G)$.
Definition: The independence number is $\alpha(G)$ and is the size of the largest independent set in a graph. A set of vertices is a subset $A \subseteq G$ such that no two vertices are adjacent. Also, $\alpha(G)=\omega(\bar{G})$.

Definition: A plane graph is a plane drawing of a graph without any intersections.
Definition: A multigraph is a graph that also allows loops (self-edges) and parallel edges (multiple edges between a pair of vertices).
Note that the handshake lemma remains valid $\left(2 m=\sum \operatorname{deg}(n)\right)$.
Definition: Regions are connected components of the complement of the plane graph.
Theorem 5.6 (Dual handshake) number of sides of a region $(r)=22^{*}$ number of edges (m)
The dual plane graph is the set of connected points between regions, going over each of the edges. Note that duals can introduce multigraphs even from a simple graph. Trees have one region. Their dual will be a vertex with $n-1$ loops (edges).

Theorem 5.7 (Euler's Formula) For a connected plane graph, $n-m+r=2$
Can prove by induction on $n+m$, but need to use the Jordan Curve Theorem, which is too advanced for this class.

Count the number N of trees on n vertices, drawing pictures: $N(2)=1, N(3)=3, N(4)=16$. Count paths of length k in K_{n} :

$$
\frac{n(n-1)(n-2) \cdots(n-k+1)}{2}
$$

Shows $N(5)=125$. These all suggest one formula:

Theorem 5.8 (Cayley's Formula) The number of spanning trees of K_{n} is n^{n-2}.
Proof: Bijective: Encode every spanning tree by a string of length $n-2$ over an alphabet of size n. "Pr"ufer code": MN, Wiki.

Another proof: figure here, prescribe: vertex i has degree $d_{i} \geqslant 1$, and $\sum_{i=1}^{n} d_{i}=2 n-2$, by the handshake theorem. Then

Theorem 5.9 Suppose d_{1}, \ldots, d_{n} satisfy these conditions, then then the number of trees with these degrees on vertex set $[n]=\{1, \ldots, n\}$ is

$$
\frac{(n-2)!}{\prod_{i=1}^{n}\left(d_{i}-1\right)!}
$$

Proof: Proof: by induction.
Lemma 5.10 If d_{1}, \ldots, d_{n} satisfy the constraints, then $\exists i, d_{i}=1$.
Proof: Suppose false: $\forall i, d_{i} \geqslant 2 \Longrightarrow \sum d_{i}=(2 n-2) \geqslant 2 n, \Rightarrow \Leftarrow$. Look at vertex n, then

$$
N\left(d_{1}, \ldots, d_{n}\right)=\sum_{i=1, d_{i} \neq 1}^{n-1} N(d_{1}, \underbrace{\ldots}_{\substack{\uparrow \\ d_{i-1}}}, d_{n-1})=\frac{(n-3)!}{\prod\left(d_{i}-1\right)!}\left(\sum_{i=1}^{n-1}\left(d_{i}-1\right)\right)=\frac{(n-2)(n-3)!}{\prod()!}=\checkmark
$$

Then, proof of Cayley's formula:

$$
\# \text { sp. trees of } K_{n}=\prod_{d_{i} \geqslant 1, \sum d_{i}=2 n-2} N\left(d_{1}, \ldots, d_{n}\right)=\sum_{d_{i} \geqslant 1, \sum d_{i}=2 n-2} \frac{(n-2)!}{\prod\left(d_{i}-1\right)!}=(\underbrace{1+\cdots+1}_{n})^{n-2}=n^{n-2}
$$

last bit by the multinomial theorem. Note: $\sum\left(d_{i}-1\right)=\sum d_{i}-n=(2 n-2)-n=n-2$.
Count n digit integers of which (1) all digits are odd, (2) all odd digits occur.
(1): 5^{n}
(1) $+(2): 5^{n}-5 \cdot 4^{n}+\binom{5}{2} \cdot 3^{n}-\binom{5}{3} 2^{n}+\binom{5}{4} 1^{n}$

This is a special case of:

5.1 Inclusion-Exclusion

Universe Ω, subsets A_{1}, \ldots, A_{k}, given $\left|\cap_{i \in I} A_{i}\right|$ for all $I \subseteq[k]$, want to find $|B|$, where $B=\overline{A_{1} \cup \ldots \cup A_{k}}$. $|B|=S_{0}-S_{1}+s_{2}-+\ldots, p_{i}:=\frac{\left|S_{i}\right|}{|\Omega|}$, uniform dist.
Answer (Inclusion-Exclusion formula):

$$
\begin{aligned}
S_{0} & =|\Omega| \\
S_{1} & =\left|A_{1}\right|+\cdots+\left|A_{k}\right| \\
S_{2} & =\left|A_{1} \cap A_{2}\right|+\left|A_{1} \cap A_{2}\right|+\cdots+\left|A_{k-1} \cap A_{k}\right| \\
\vdots & \\
S_{j} & =\sum_{1 \leqslant i_{1}<\cdots<i_{j} \leqslant k}\left|A_{i_{1}} \cap \cdots \cap A_{i_{j}}\right|
\end{aligned}
$$

and number of terms in S_{j} is $\binom{k}{j}$.

Example: $|\Omega|=5^{n}$ strings with digits $1,2,3,4,5, A_{i}$ set of those that miss ith digit, $A_{i} \cap A_{j} .5^{n}-5 * 4^{n}+$ $\binom{5}{2} * 3^{n}-\binom{5}{3} * 2^{n}+\binom{5}{4} * 1^{n}$.

Proof: For any x (diagram), look at $r(x)=\#\left\{i \mid x \in A_{i}\right\}=r$ and $c(x)$, the contribution of x to $S_{0}-S_{1}+\cdots$. Need to prove:

$$
c(x)=\left\{\begin{array}{l}
1 \text { if } x \in B, \text { i.e. } r(x)=0 \\
0 \text { if } x \notin B, \text { i.e. } r(x)=1
\end{array}\right.
$$

Now,

$$
c(x)=1-r+\binom{r}{2}-\binom{r}{3}+\cdots=(1-1)^{r}=0^{r}=\left\{\begin{array}{l}
1 \text { if } r=0 \\
0 \text { if } r \geqslant 1
\end{array}\right.
$$

More general version (we only have over uniform distribution): over any probability distribution:
Theorem 5.11 If A_{1}, \ldots, A_{k} are events and p_{i} is defined by $\left(^{*}\right)$, then $P(B)=p_{0}-p_{1}+p_{2}-+\ldots=$ $\sum_{I \subseteq[k]}(-1)^{|I|} P\left(\bigcap_{i \in I} A_{i}\right)$.
where $\left({ }^{*}\right)$ is

$$
\begin{aligned}
p_{0} & =P(\Omega)=1 \\
p_{1} & =\sum P\left(A_{i}\right) \\
p_{2} & =\sum P\left(A_{i} \cap A_{j}\right) \\
\vdots &
\end{aligned}
$$

(general).
Q: Adapt previous proof
A, B events, I_{A} indicator variable:

$$
I_{A}(x)=\left\{\begin{array}{l}
1 \text { if } x \in A \\
0 \text { if } x \notin A
\end{array}\right.
$$

Q:

$$
\begin{aligned}
I_{A \cup B} & =I_{A} I_{B} \\
I_{\bar{A}} & =1-I_{A}
\end{aligned}
$$

Now

$$
\begin{aligned}
& \left(1+x_{1}\right)\left(1+x_{2}\right) \cdots\left(1+x_{n}\right)=\sum_{I \subseteq[n]} \prod_{i \in I} x_{i} \\
& \left(1-x_{1}\right)\left(1-x_{2}\right) \cdots\left(1-x_{n}\right)=\sum_{I \subseteq[n]}(-1)^{|I|} \prod x_{i}
\end{aligned}
$$

Now,

$$
\begin{array}{r}
B=\overline{A_{1} \cup \cdots \cup A_{k}}=\overline{A_{1}} \cap \cdots \cap \overline{A_{k}}, \\
I_{B}=\prod I_{\overline{A_{i}}}=\prod_{i=1}^{k}\left(1-I_{A_{i}}\right)=\sum_{I \subseteq[k]}(-1)^{|I|} \prod_{i \in I} I_{A_{i}}=\sum_{I \subseteq[k]}(-1)^{|I|} I_{\cap_{i \in I} A_{i}}
\end{array}
$$

By linearity of expectation,

$$
P(B)=E\left(I_{B}\right)=\sum_{I \subseteq[k]}(-1)^{|I|} E\left(I_{\cap_{i \in I} A_{i}}=\sum_{I \subseteq[k]}(-1)^{|I|} P\left(\cap_{i \in I} A_{i}\right)\right.
$$

Application 1: explicit formula for Euler's ϕ function:

$$
n=\prod_{i=1}^{n} p_{i}^{k_{i}}, \quad \phi(n)=n \prod_{i=1}^{t}\left(1-\frac{1}{p_{i}}\right)
$$

Proof: $\Omega=[n], A_{i} \subseteq \Omega=$ set of numbers divisible by $p_{i}, B=\overline{\cup A_{i}}=\{j: \operatorname{gcd}(j, n)=1\}, \phi(n)=|B|$.
$\left|A_{i}\right|=\frac{n}{p_{i}}, P\left(A_{i}\right)=\frac{1}{p_{i}},\left|A_{i} \cap A_{j}\right|=\frac{n}{p_{i} p_{j}}, P\left(A_{i} \cap A_{j}\right)=\frac{1}{p_{i} p_{j}}$, uniform distribution, $P(B)=\frac{|B|}{n} .$,

$$
P(B)=\sum_{|I| \subseteq[t]}(-1)^{|I|} P\left(\cap_{i \in I} A_{i}\right)=\sum(-1)^{|I|} \frac{1}{\prod_{i \in I} p_{i}}=\sum_{I \subseteq[t]}(-1)^{|I|} \prod_{i \in I} \frac{1}{p_{i}}=\prod\left(1-\frac{1}{p_{i}}\right) \checkmark
$$

Application: "derangement problem": probability that random permutation is a derangement $\sim \frac{1}{e}$. In MN, read "Hatcheck Lady \& Co."

Now, back to random variables.
Definition: X, Y random variables are independent if

$$
(\forall x, y \in \mathbb{R})(P(X=x, Y=y)=P(X=x) P(Y=y))
$$

If $E(X Y)>E(X) E(Y), X$ and Y are positively correlated, if $E(X Y)<E(X) E(Y)$ they're negatively correlated, if equal then they're uncorrelated.

Note that independence \Longrightarrow uncorrelated but not the other way around.
Corollary 5.12 If $P(y=y) \neq 0$, then $P(X=x)=P(x=x \mid Y=y)$.
2: If X, Y independent, then $E(X Y)=E(X) E(Y)$.
Q: Events A, B independent $\Longleftrightarrow I_{A}, I_{B}$ are independent.
Definition: Random variables X_{1}, \ldots, X_{k} independent (fully independent, mutually independent, collectionwise independent) if

$$
\left(\forall x_{1}, \ldots, x_{k} \in \mathbb{R}\right)\left(P\left((\forall i)\left(X_{i}=x_{i}\right)\right)=\prod_{i=1}^{k} P\left(X_{i}=x_{i}\right)\right.
$$

Q: Events A_{1}, \ldots, A_{k} are independent $\Longleftrightarrow I_{A_{1}}, \ldots, I_{A_{k}}$ independent.
Theorem 5.13 If X_{1}, \ldots, X_{k} are independent, then

$$
E\left(\prod_{i=1}^{k} X_{i}\right)=\prod_{i=1}^{k} E\left(X_{i}\right)
$$

: If X, Y, Z, W, T are independent random variables, then $X+Y, \cos (Z-W), e^{T}$ are independent.
2: If $X-1, \ldots, X_{k}$ are independent random variables and $[k]=I_{1} \uplus \cdots \uplus I_{t}$ partition and f_{1}, \ldots, f_{t} are functions and f_{i} has $\left|I_{i}\right|$ variables, then $f_{1}\left(X_{i}: i \in I_{1}\right), \ldots, f_{t}\left(X_{i}: i \in I_{t}\right)$ are independent random variables.

The covariance of X and Y is

$$
\operatorname{Cov}(X, Y)=E(X Y)-E(X) E(Y)
$$

X and Y are positively correlated if $\operatorname{Cov}(X, Y)>0$, negatively correlated if $\operatorname{Cov}(X, Y)<0$, uncorrelated if $\operatorname{Cov}(X, Y)=0$.

The variance,or second moment, is

$$
\begin{aligned}
\operatorname{Var}(X) & =E\left[(X-m)^{2}\right], \quad m=E(X) \\
& =E\left[X^{2}+m^{2}-2 X m\right] \\
& =E\left[X^{2}\right]+E\left[m^{2}\right]-2 E[m X] \\
& =E\left[X^{2}\right]-m^{2} \\
& =E\left[X^{2}\right]-(E[X])^{2}
\end{aligned}
$$

Have

$$
\operatorname{Var}\left(\sum_{i} X_{i}\right)=\sum_{i} \operatorname{Var}\left(X_{i}\right)+2 \sum_{i<j} \operatorname{Cov}\left(X_{i}, X_{j}\right) .
$$

For X_{i} a random variable, $X=\sum X_{i}$,

$$
E[X]=E\left[\sum_{i} X_{i}\right]=\sum_{i} E\left[X_{i}\right] .
$$

Also,

$$
\operatorname{Var}\left(\sum_{i} X_{i}\right)=E\left[\left(\sum X_{i}\right)^{2}\right]-\left(E\left[\sum X_{i}\right]\right)^{2}
$$

: $\left(x_{1}+\cdots+x_{n}\right)^{2}=\sum_{i} \sum_{j} x_{i} x_{j}=\sum_{i} x_{i}^{2}+2 \sum_{i<j} x_{i} x_{j}$
Now,

$$
\begin{aligned}
\operatorname{Var}\left(\sum_{i} X_{i}\right) & =E\left[\left(\sum X_{i}\right)^{2}\right]-\left(E\left[\sum X_{i}\right]\right)^{2} \\
& =E\left[\sum_{i} X_{i}^{2}+2 \sum_{i<j} X_{i} X_{j}\right]-\left(\sum_{i} E\left(X_{i}\right)\right)^{2} \\
& =\sum_{i} E\left(X_{i}^{2}\right)+2 \sum_{i<j} E\left(X_{i} X_{j}\right)-\left(\sum_{i} E\left(X_{i}\right)^{2}+2 \sum_{i<j} E\left(X_{i}\right) E\left(X_{j}\right)\right) \\
& =\sum_{i}\left(E\left(X_{i}^{2}\right)-E\left(X_{i}\right)^{2}\right)+2 \sum_{i<j}\left(E\left(X_{i}, X_{j}\right)-E\left(X_{i}\right) E\left(X_{j}\right)\right) \\
& =\sum_{i} \operatorname{Var}\left(X_{i}\right)+2 \sum_{i<j} \operatorname{Cov}\left(X_{i}, X_{j}\right)
\end{aligned}
$$

$\operatorname{Var}\left(\sum X_{i}\right)=\sum \operatorname{Var}\left(X_{i}\right)$ and standard deviation (SD) is $\sigma(x)=\sqrt{\operatorname{Var}(X)}$.

$$
\operatorname{Var}(X)=E\left(X^{2}\right)-E(X)^{2} \geqslant 0 \Longrightarrow E\left(X^{2}\right) \geqslant E(X)^{2}
$$

The last inequality is the Cauchy-Schwartz Inequality, perhaps in a different form than you've seen before. Another representation of Cauchy-Schwartz:

$$
\begin{aligned}
\left(\sum X_{i} Y_{i}\right)^{2} & \leqslant\left(\sum X_{i}^{2}\right)\left(\sum Y_{i}^{2}\right) \\
E(X Y)^{2} & \leqslant E\left(X^{2}\right) E\left(Y^{2}\right)
\end{aligned}
$$

Setting $a=X_{i} / \sqrt{E\left(X_{i}^{2}\right)}, b=Y_{i} / \sqrt{E\left(Y_{i}^{2}\right)}$,

$$
\begin{aligned}
a^{2}+b^{2} \geqslant 2 a b & \Longrightarrow E\left(a^{2}\right)+E\left(b^{2}\right) \geqslant 2 E(a b) \\
& \Longrightarrow E\left(\frac{X_{i}^{2}}{E\left(X_{i}^{2}\right)}\right)+E\left(\frac{Y_{i}^{2}}{E\left(Y_{i}^{2}\right)}\right) \geqslant 2 E\left(\frac{X_{i} Y_{i}}{E\left(X_{i}^{2}\right) E\left(Y_{i}^{2}\right)}\right) \\
& \Longrightarrow 1+1 \geqslant 2 \frac{E\left(X_{i} Y_{i}\right)}{\sqrt{E\left(X_{i}^{2}\right) Y\left(Y_{i}^{2}\right)}}
\end{aligned}
$$

A Bernoulli trial means tossing a biased coin: H with prob. p, tails with prob $1-p$. A k-Bernoulli trial is a completely independent set of k Bernoulli trials, $X_{k}=P[n-$ Bernoulli trial will have k heads $]$.

$$
P\left(X_{k}\right)=\binom{n}{k} p^{k}(1-p)^{n-k}
$$

Let Y_{i} be the outcome of the ith Bernoulli trial $(=1$ if $\mathrm{H}, 0$ if T$)$. Define $X=\sum Y_{i}$, get

$$
\begin{array}{r}
E[X]=E\left[\sum Y_{i}\right]=\sum_{i} E\left[Y_{i}\right]=\sum_{i} p=n p \\
\operatorname{Var}[X]=\operatorname{Var}\left[\sum Y_{i}\right]=\sum_{i} \operatorname{Var}\left[Y_{i}\right]=\sum_{i}\left[E\left[Y_{i}^{2}\right]-E\left[Y_{i}\right]^{2}\right]=n\left(p-p^{2}\right)=n p(1-p)
\end{array}
$$

The weak law of large numbers says that for $\epsilon, p>0$ fixed,

$$
P\left[\left|X^{n}-n p\right|>\epsilon(n p)\right] \rightarrow_{n \rightarrow \infty} 0
$$

To prove, this need the Markov inequality: for η a random variable, non-negative,

$$
P[\eta>a] \leqslant \frac{E[\eta]}{a}
$$

Proof:

$$
E[\eta]=\sum_{i} \mu_{i} P\left(\eta=\mu_{i}\right) \geqslant \sum_{\mu_{i}>a} \mu_{i} P\left(\eta=\mu_{i}\right)>a \sum_{\mu_{i}>a} P\left(\eta=\mu_{i}\right)=a P[\eta>a]
$$

This is the first of the so-called concentration lemmas. Another is Chebyshev's inequality:

$$
P[|\eta-m|>a] \leqslant \frac{\operatorname{Var}(\eta)}{a^{2}}, \quad m=E(\eta)
$$

Proof:

$$
P[|\eta-m|>a]=P\left[(n-m)^{2}>a^{2}\right] \leqslant \frac{E\left[(\eta-m)^{2}\right]}{a^{2}}=\frac{\operatorname{Var}(\eta)}{a^{2}}
$$

C's inequality proves the WLLN, because

$$
\Longrightarrow P\left[\left|X^{n}-n p\right|>\epsilon n p\right] \leqslant \frac{n p(1-p)}{\epsilon^{2} n^{2} p^{2}}=\frac{(1-p)}{\epsilon^{2} p n} \rightarrow 0
$$

as $n \rightarrow \infty$. Now, some problems.
A random graph on n vertices: for each $\left(v_{i}, v_{j}\right)$ toss an unbiased coin to decide whether the edge is in the graph. Then want to show that
$P\left[\right.$ All vertices in the graph has degree close to $\left.\frac{n}{2}\right] \rightarrow_{n \rightarrow \infty} 1$
The expected number of neighbors of a vertex is $(n-1) / 2$.

$$
\begin{array}{ll}
P\left[\forall \sigma \in V,\left|N(v)-\frac{n-1}{2}\right| \leqslant \frac{\epsilon(n-1)}{2}\right] & \rightarrow 1 \\
P\left[\exists v \in V,\left|N(v)-\frac{n-1}{2}\right|>\frac{\epsilon(n-1)}{2}\right] & \rightarrow 0
\end{array}
$$

Y_{σ} is probability that for vertex $v,\left|N(v)-\frac{n-1}{2}\right|>\frac{\epsilon(n-1)}{2}$, want $P\left[\bigcup_{v} Y_{v}\right] \rightarrow 0$. The union bound is

$$
P\left[\bigcup_{v} Y_{v}\right] \leqslant \sum_{v} P\left[Y_{v}\right] \downarrow 0
$$

$(N(v)$ is the degree of vertex $v)$ Now

$$
\begin{aligned}
P\left[Y_{\sigma}\right] & =P\left[\left|N(v)-\frac{n-1}{2}\right| \geqslant \frac{\epsilon(n-1)}{2}\right] \\
& \leqslant \frac{\operatorname{Var}\left(Y_{\sigma}\right)}{\left(\frac{\epsilon(n-1)}{2}\right)^{2}}=\frac{n}{4 \epsilon^{2} \frac{n^{2}}{4}}=\frac{1}{\epsilon^{2} n}=O\left(\frac{1}{n}\right)
\end{aligned}
$$

So here, Chebyshev isn't enough. Need Chernoff bound: let η_{i} be 1 with prob. $\frac{1}{2},-1$ with prob. $\frac{1}{2}$, $E\left[\eta_{i}\right]=0$. Then

$$
P\left[\sum_{i=1}^{n} \eta_{i}>a\right] \leqslant \exp \left(-\frac{a^{2}}{2 n}\right)
$$

We can adapt this slightly for our purposes, take $\eta_{i}=1 \mathrm{w} . \mathrm{p} \frac{1}{2},=0$ otherwise,

$$
P\left[\left|\sum_{i=1}^{n} \eta_{i}-\frac{n}{2}\right|>\frac{\epsilon n}{2}\right] \leqslant \exp \left(-\left(\frac{\epsilon^{2} n^{2}}{2 n}\right)\right)=\exp (-O(n))
$$

5.2 Random graph

With high probability, ${ }^{5}$ when the last vertex is reached by an edge, the graph is connected. There's a whole theory of random graphs. Whole subject stems from one original paper: Erdös \& Rényi 1960, "Evolution of random graphs." Choosing m edges at random, $|\Omega|=\left(\begin{array}{c}\binom{n}{2}\end{array}\right)$. Note that if know one edge there, any other edge less likely to occur, so they're negatively correlated. In another model, edges are thrown in independently with probability p, then $m=\binom{n}{2} p=E$ (\# edges). The first model is referred to as $G_{n, m}$ model, second is $G_{n, p}$ model, much more studied.

Most frequently studied in an introduction to random graphs is $G_{n, \frac{1}{2}}$.
Definition: The diameter of G is $\operatorname{diam}(G)=\max _{x, y \in V} \operatorname{dist}(x, y)$. The distance between $x, y \in V$ is $\operatorname{dist}(x, y)=\min \operatorname{length}(x-y$ path $)$.

For example, $\operatorname{diam}\left(K_{n}\right)=1$, longest path is $K_{n}=n-1$.
Theorem 5.14 Almost all graphs have diameter 2, meaning if $p_{n}=P\left(\operatorname{diam}\left(G_{n, \frac{1}{2}}\right)=2\right)$, then $\lim _{n \rightarrow \infty} p_{n}=1$ In fact, $\operatorname{diam} \neq 2$ is exponentially unlikely: $1-p_{n}<C^{n}$ for some constant $0<C<1$, find $<0.76^{n} \checkmark$.

Q: $\forall p>0$ constant, $P\left(\operatorname{diam}\left(G_{n, p}\right)=2\right) \rightarrow 1$.
Let

$$
\begin{aligned}
g_{n} & :=P(\underbrace{\operatorname{diam}\left(G_{n, \frac{1}{2}}\right) \geqslant 3}_{A_{n}}) \\
r_{n} & :=P(\underbrace{(\exists x \neq y \in V)((\nexists z)(x \sim z \sim y))}_{B_{n}})
\end{aligned}
$$

$A_{n} \Longrightarrow B_{n}$ because if diam $\geqslant 3$ then $\exists x, y$ such that $\operatorname{dist}(x, y) \geqslant 3$.

[^3]Claim: $r_{n} \rightarrow 0$ at an exponential rate.
Proof: For $x \neq y \in V, A(x, y)=" x, y$ have no common neighbor" $=\bigcap_{z \neq x, y}$ " z is not a common neighbor", which are $n-2$ independent events. To see this, fix $x, y, z, P(x \sim z, y \sim z)=\frac{1}{4}, z$ is a common neighbor, so $P(z$ is not a common neighbor of $x, y)=\frac{3}{4}$, and

$$
\begin{gathered}
P(A(x, y))=\left(\frac{3}{4}\right)^{n-2} \\
P(\underbrace{\exists x \neq y)}_{\binom{n}{2} \text { choices }} A(x, y))=P(\bigcup_{x \neq y}^{\binom{n}{2} A(x, y)} \underbrace{<}_{\text {unionbd }}\binom{n}{2}\left(\frac{3}{4}\right)^{n-2}<\left(\frac{3}{4}+\epsilon\right)^{n}
\end{gathered}
$$

for $n \geqslant n_{0}, \forall \epsilon>0 \exists n_{0}$., where last $<$ is œ.

5.3 Digraphs

Directed graphs. A digraph is a relation on $V, E \subseteq V \times V$. We can use graphs as digraphs by replacing an edge with \approx 。

A directed walk is $v_{0} \rightarrow v_{1} \rightarrow \ldots \rightarrow v_{k}$ of length k, a directed path has no repeated vertices, a cycle has $v_{0}=v_{k} . y$ is accessible from x if $\exists x \rightarrow \cdots y$ path (means directed path). Say " y is accessible from x ", $k=0$.

Q: Accessibility is a transitive relation.
Definition: x, y are mutually accessible if x is accessible from y and vice versa.
Q: This is an equivalence relation.
Definition: The strong components are equivalence classes.
(The strong components form a poset under accessibility.
Have sources and sinks, nice figures here.
Definition: Weakly connected means "connected" if we ignore orientation. ${ }^{6}$
The adjacency matrix of $G=(V, E)$ is a $(0,1)$ matrix, $V=[n], A=\left(a_{i j}\right)$,

$$
a_{i j}= \begin{cases}1 & \text { if } i \rightarrow j \\ 0 & \text { otherwise }\end{cases}
$$

The transpose of this is $B=A^{T}, b_{i j}=a_{j i}$. $G^{\text {reverse }}$ corresponds to adjacent matrix A^{T}.
Definition: A symmetric matrix is $A=A^{T}$ (\Longleftrightarrow undirected, loops permitted).
A DAG is a "directed acyclic graph" (no cycles).
Q: Prove G is a DAG \Longleftrightarrow has a topological sort.
Now, A is $k \times l, B$ is $l \times n, C=A B=\left(c_{i j}\right)$,

$$
c_{i j}=\sum_{t=1}^{l} a_{i t} b_{t j}
$$

For A an adjacency matrix of $G=(V, E), A^{2}=\left(b_{i j}\right), n \times n, b_{i j}=\sum_{t=1}^{n} a_{i t} a_{t j}$, so $b_{i j}=\# 2$-step $i \rightarrow j$ walks.

[^4]Q: $A^{k}=\left(c_{i j}\right), c_{i j}=\#$ of k-step walks $i \rightarrow \cdots \rightarrow j$.
A discrete stochastic process is a set of states B and transitions between states. A finite Markov chain is a finite set of states and fixed transition probabilities, $V=[n], p_{i j}=P\left(X_{t+1}=j \mid X_{t}=i\right), X_{t}$ is location of particle at time t. Let $T=\left(p_{i j}\right)$ be the transition matrix of a finite Markov chain, then $T^{2}=\left(g_{i j}\right)$, $g_{i j}=\sum_{l=1}^{n} p_{i l} p_{l j}$.

Q: $p_{i l} p_{l j}=P\left(X_{t+1}=l\right.$ and $\left.X_{t+2}=j \mid X_{t}=i\right)$
So, $=P\left(X_{t+2}=j \mid X_{t}=i\right)$, 2-step transition probabilities
2: $T^{k}=\left(p_{i j}^{(k)}\right), p_{i j}^{(k)}=P\left(X_{t+k}=j \mid X_{t}=i\right), k$-step transition probabilities
If $T^{k} \approx$ uniform $=\frac{1}{n} J, J$ is matrix with all 1 's.
Observation: Every row of T is $\geqslant 0$ and sums to 1 : $\sum_{j=1}^{n} p_{i j}=1$.
Definition: T is a stochastic matrix if $t_{i j} \geqslant 0$ and $\sum_{i=1}^{n} t_{i j}=1$.
Have a digraph associated with $T: a_{i j}=1 \Longleftrightarrow p_{i j}>0$. One interesting question is whether it's strongly connected.

5.4 Matrix theory and applications to digraphs and finite Markov chains

Entries of A^{k} count k-step walks $i \rightarrow \cdots \rightarrow j$. T is a stochastic matrix if $p_{i j} \geqslant 0, \sum_{j=1}^{n} p_{i j}=1$, the row sums.
The adjacency matrix has entries

$$
a_{i j}= \begin{cases}1 & i \rightarrow j \\ 0 & \text { otherwise }\end{cases}
$$

The transition matrix $T=\left(p_{i j}\right)$,

$$
p_{i j}=P\left(X_{t+1}=j \mid X_{t}=i\right)
$$

The entries of $T_{k}=\left(p_{i j}^{(k)}\right)$ are the k-step transition probabilities.
Definition: For A an $n \times n$ matrix with real or complex entries, $\lambda \in \mathbb{R}$ or $\mathbb{C}, \boldsymbol{x} \in \mathbb{R}^{n}$ or $\mathbb{C}^{n}, \boldsymbol{x}=\left[x_{1} \cdots x_{n}\right]^{T}$. \boldsymbol{x} is a right eigenvector of A to eigenvalue λ if $\boldsymbol{x} \neq 0=[0 \cdots 0]^{T}$ and $A \boldsymbol{x}=\lambda \boldsymbol{x}$. For $\boldsymbol{y}=\left[y_{1} \cdots y_{n}\right]^{T}$, $\boldsymbol{y}^{T}=\lambda \boldsymbol{y}, \boldsymbol{y}^{T}$ is a left eigenvector. λ is a right eigenvalue of A if \exists corresponding right eigenvectors.

Theorem 5.15 Right \Longleftrightarrow left eigenvalues.
F is the "field of scalars", $F=\mathbb{R}$ or \mathbb{C}.
Definition: The vectors $\boldsymbol{x}_{1}=\left[x_{11} \cdots x_{1 n}\right]^{T}, \ldots, \boldsymbol{x}_{k}=\left[x_{k 1} \cdots x_{k n}\right]^{T}$ are linearly independent if only their trivial linear combination is zero, where

$$
\lambda_{1} \boldsymbol{x}_{1}+\cdots+\lambda_{k} \boldsymbol{x}_{k}=0
$$

is a linear combination, $x_{i j} \in F, \lambda_{i} \in F, \lambda_{1}=\cdots=\lambda_{k}=0$ is the trivial linear combination.
Definition: $\operatorname{rank}\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{k}\right)=$ maximum number of linearly independent vectors among the \boldsymbol{x}_{i}.

Comments: If $(\exists i)\left(\boldsymbol{x}_{i}=\mathbf{0}\right)$ then $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{k}$ are not linearly independent,

$$
0 \boldsymbol{x}_{1}+\cdots+1 \boldsymbol{x}_{i}+\cdots{ }_{0} \boldsymbol{x}_{n}=0
$$

If $(\exists i \neq j)\left(\boldsymbol{x}_{i}=\boldsymbol{x}_{j}\right)$, then

$$
\underbrace{\cdots}_{0}+1 \boldsymbol{x}_{i}+\underbrace{\cdots}_{0}+(-1) \boldsymbol{x}_{j}+\underbrace{\cdots}_{0}=\mathbf{0}
$$

Q: In \mathbb{R}^{n} find $n+1$ vectors such that every \boldsymbol{n} of them are linearly independent
For A a $k \times l$ matrix over F, the column rank of A is $\operatorname{rank}\left(\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{l}\right)$ and the row rank of A is $\operatorname{rank}\left(\boldsymbol{r}_{1}, \ldots, \boldsymbol{r}_{k}\right)$, where \boldsymbol{a}_{i} is the i th column of A, r_{i} is the i th row of A. By definition, $\operatorname{rowrank}(A)=\operatorname{colrank}(A)$. But:

Miracle \# 1 (of linear algebra): If $S \subseteq F^{n}$, then every maximal (=nothing can be added to preserve linear independence) linearly independent subset of S is maximum (=largest).
Miracle \# 2: colrank $=$ rowrank, i.e. $\operatorname{colrank}(A)=\operatorname{colrank}\left(A^{T}\right)$.
Definition: For S a set of vectors, $\operatorname{span}(S)=$ set of all linear combinations of S.
Obs: $\forall S \subseteq F^{n}, 0 \in \operatorname{Span}(S)$ even if $S=\varnothing$.
Definition: $U \subseteq F^{n}$ is a subspace if $(0 \in U)$ and U is closed under linear combinations.
Q: $\operatorname{Span}(S)$ is always a subspace.
Definition: If $U \subseteq F^{n}, \operatorname{dim}(U)=\operatorname{rank}(U)$.
If $\operatorname{dim} U=d$ then $\exists d$ linearly independent vectors in U and no more.
For $\boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{d}$,
Claim: $\operatorname{Span}\left(\boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{d}\right)=U$
Proof: Let $\boldsymbol{x} \in U$. NTS: $\boldsymbol{x} \in \operatorname{Span}\left(\boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{d}\right)$, i.e., $\exists \lambda_{1}, \ldots, \lambda_{d} \in F$ such that $x=\lambda_{1} \boldsymbol{b}_{1}+\cdots+\lambda_{d} \boldsymbol{b}_{d}$.
We know that $\boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{d}, \boldsymbol{x}$ are linearly dependent, i.e. $\exists \alpha_{1}, \ldots, \alpha_{d}, \alpha_{d+1}$, not all zero, such that $\sum_{i=1}^{d} \alpha_{i} \boldsymbol{b}_{i}+$ $\alpha_{d+1} \boldsymbol{x}=0$.

Claim: $\alpha_{d+1} \neq 0$ because $\boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{d}$ are linearly independent, so $\sum\left(-\frac{\alpha_{i}}{\alpha_{d+1}}\right) \boldsymbol{b}_{i}=\boldsymbol{x} \checkmark$
Definition: A basis of a set of vectors S is a linearly independent set of vectors in S which spans S, i.e. $S \subseteq \operatorname{Span}($ those vectors)

Example: Column-basis of a matrix A.
Theorem 5.16 Every maximal linearly independent subset of S is a basis of S
Proof:
Theorem $5.17 \boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{k} \in U$ (subspace) is a basis of U if and only if every $\boldsymbol{x} \in U$ can be written as a unique linear combination of $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{k}$.

Obs: If $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{k}$ are linearly independent and $\sum \alpha_{i} \boldsymbol{a}_{i}=\sum \beta_{i} \boldsymbol{a}_{i} \Longrightarrow(\forall i)\left(\alpha_{i}=\beta_{i}\right)$
Proof: $\sum\left(\alpha_{i}-\beta_{i}\right) \boldsymbol{a}_{i}=\mathbf{0}$
Obs: Conversely, if $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{k}$ are linearly dependent, then every vector in $\operatorname{Span}\left(\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{k}\right)$ can be written as a linear combination in more than one way.

Proof: $0=0 \boldsymbol{a}_{1}+\cdots+0 \boldsymbol{a}_{k}=\lambda_{1} \boldsymbol{a}_{1}+\cdots+\lambda_{i} \boldsymbol{a}_{k}$ with not all $\lambda_{i}=0$. Suppose now $\boldsymbol{x}=\sum \alpha_{i} \boldsymbol{a}_{i}=\sum\left(\alpha_{i}+\lambda_{i}\right) \boldsymbol{a}_{i}$.
The standard basis of F^{n} is $\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{n}$ (defined as usual, I'm not writing out). This is a basis because

$$
\sum \alpha_{i} \boldsymbol{e}_{i}=\left[\alpha_{1} \cdots \alpha_{n}\right]^{T} \in F^{n}
$$

and this decomposition is unique.
Corollary $5.18 \operatorname{dim} F^{n}=n$
Q: If $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{k} \in S$ are linearly independent, then this can be extended to a basis.
Definition: $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{m}$ generate U if $U=\operatorname{Span}\left(\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{n}\right)$.
Q: If $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{n}$ generate U, then \exists a subset of them that is a basis.
Matrix notation: say $A \boldsymbol{x}=\boldsymbol{b}$ for A a $k \times l$ matrix, $\boldsymbol{x} \in F^{l}, \boldsymbol{b} \in F^{k}$, denotes a system of linear equations

$$
\begin{aligned}
a_{11} x_{1}+\cdots+a_{1 l} x_{l} & =b_{1} \\
& \vdots \\
a_{k 1} x_{1}+\cdots,+a_{k l} x_{l} & =b_{k}
\end{aligned}
$$

$A=\left[a_{1}, \ldots, \boldsymbol{a}_{l}\right], \boldsymbol{a}_{j}$ the j th column of $A, A \boldsymbol{x}=\boldsymbol{x}_{1} \boldsymbol{a}_{1}+\cdots+\boldsymbol{x}_{l} \boldsymbol{a}_{l}$ (So in the system of linear equations $A \boldsymbol{x}=\boldsymbol{b}$, we are looking to express \boldsymbol{b} as a linear combination of the columns of A.
$x_{1} \boldsymbol{a}_{1}+\cdots+\boldsymbol{x}_{l} \boldsymbol{a}_{l}=\boldsymbol{b}, \boldsymbol{x}_{i}$ unknown,
Corollary 5.19 $A \boldsymbol{x}=\boldsymbol{b}$ solvable $\Longleftrightarrow b \in \operatorname{Span}\left(\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{k}\right) \Longleftrightarrow \operatorname{rank}(A)=\operatorname{rank}(A \mid b)$
The method to solve a system of linear equations $=$ method to find rank: this is Gaussian elimination, READ anywhere, not going to do here.

A homogeneous system of linear equations is $A \boldsymbol{x}=\mathbf{0} . \boldsymbol{x}=\mathbf{0}$ is always a solution (trivial solution). A nontrivial solution exists $\Longleftrightarrow \boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{l}$ are linearly dependent, $\sum x_{i} \boldsymbol{a}_{i}=\mathbf{0}$.

Corollary 5.20 For a $k \times l$ matrix A, the following are equivalent:

1. $A \boldsymbol{x}=\mathbf{0}$ has no nontrivial solutions.
2. The columns of A are linearly independent.
3. $\operatorname{rank}(A)=l$
4. The rows of A span F^{l}
5. A has a left inverse, i.e. $\exists B, l \times k$ such that $B A=I_{l}$, the $l \times l$ identity matrix

2: Review the proof of the equivalence of (1)-(4)
: Show (5)
Q: $\operatorname{rank}(A \cdot B) \leqslant \min \{\operatorname{rank}(A), \operatorname{rank}(B)\}$
2: Find A, B with rank 0 such that $A \times B=0($ and $A, B \neq 0)$.
Q: Find $A \neq 0$ such that $A^{2}=0$
思 If $F=\mathbb{R}$, then $\operatorname{rank}\left(A^{T} A\right)=\operatorname{rank}(A)$.
Theorem 5.21 For an $n \times n$ matrix A over F, the following are equivalent:

1. $A \boldsymbol{x}=0$ has no nontrivial solution.
2. $\forall \boldsymbol{b} \in F^{n}(\exists \boldsymbol{x})(A \boldsymbol{x}=b)$
3. $\left(\forall \boldsymbol{b} \in F^{n}\right)(\exists!\boldsymbol{x})(A \boldsymbol{x}=\boldsymbol{b})$
4. Columns of A are linearly independent.
5. Rows"
6. Columns span F^{n}
7. Rows span F^{n}.
8. A has a left inverse
9. A has a right inverse
10. A has a 2-sided inverse
11. $\operatorname{det}(A) \neq 0$

Name derives from fact that it "determines" whether or not the set of linear equations has a nontrivial solution.

Definition: A is nonsingular if $\operatorname{det}(A) \neq 0$
Q: Equivalence of all but the last property (det) in the previous theorem.

Definition:

$$
\operatorname{det}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=a d-b c
$$

Note: If $A n \times n$ then $\operatorname{det} A$ is a sum of $n!$ terms, half + , half - . The eigenvalue equation is $A \boldsymbol{x}=\lambda \boldsymbol{x}, \boldsymbol{x} \neq 0$, $A \boldsymbol{x}=\lambda I \boldsymbol{x}, I=I_{n}$. So λ is an eigenvalue $\Longleftrightarrow \exists \boldsymbol{x} \neq \mathbf{0}$ such that $(\lambda I-A) \boldsymbol{x}=\mathbf{0} \Longleftrightarrow \lambda I-A$ singular.

Theorem 5.22 λ is an eigenvalue $\Longleftrightarrow \operatorname{det}(\lambda I-A)=0$.
Fact: $\operatorname{det}(A)=\operatorname{det}\left(A^{T}\right)$ Example: A as above, eventually get

$$
\operatorname{det}(\lambda I-A)=\lambda^{2}-(a+d) \lambda+(a d-b c)
$$

a quadratic equation in λ, say $f_{A}(t)=\operatorname{det}(t I-A)$, this is a polynomial of degree n , the characteristic polynomial of A.

Corollary 5.23λ is an eigenvalue of $A \Longleftrightarrow f_{A}(\lambda)=0$, i.e. λ is a root of the characteristic polynomial.
Corollary 5.24 Left \Longleftrightarrow right eigenvalues the same, because $f_{A}(t)=f_{A^{T}}(t)$.
2: A is stochastic $\Longleftrightarrow a_{i j} \geqslant 0$ and 1 is an eigenvalue with right eigenvector $[1 \cdots 1]^{T}$.
A group $(G, \cdot),(G,+)$ has $(\forall a, b \in G), \cdot: G \times G \rightarrow G,(a, b) \mapsto a b$

1. $(\exists!c \in G)(" a b=c ")(" a+b=c$ " $)$
2. associative: $(a b) c=a(b c),(a+b)+c=a+(b+c)$.
3. identity: $(\exists e)(\forall a)(a e=e a=a), e$ is the identity
4. inverse: $(\forall a)(\exists b)(a b=b a=e), b=a^{-1},(\forall a)(\exists b)(a+b=b+a=0), b=(-a)$.
5. commutativity: $a b=b a, a+b=b+a$, if true this is an abelian group

Some groups are $(\mathbb{Z},+),(\mathbb{R},+), \mathbb{R}^{\times}=\mathbb{R} \backslash\{0\},\left(\mathbb{R}^{\times}, \cdot\right)$. For $\mathbb{Z}_{n}=$ residue classes $\bmod n,\left(\mathbb{Z}_{n},+\right)$ is a group, $\left(\mathbb{Z}_{n}, \cdot\right)$ isn't, define $\mathbb{Z}_{n}=$ reduced residue classes $\bmod \mathrm{n}=$ residue classes that are relatively prime to n , $\left|\mathbb{Z}_{n}^{+}\right|=\phi(n)$,

Q: $\left(\mathbb{Z}_{n}^{\times}, \cdot\right)$ is a group.
$G L_{n}(\mathbb{R})$ is the group of $n \times n$ nonsingular real matrices, det $\neq 0$, means \exists inverse, full rank. Can have time for $G L_{n}(\mathbb{F})$, where \mathbb{F} is any field. The identity element is I, the $n \times n$ identity matrix.

Q: Give simplest proof that if A, B nonsingular, then $A B$ is nonsingular.
The symmetric group of degree n is all permutations of $[n], S_{n}$, where a permutation is a bijection

$$
f:[n] \rightarrow[n] \quad \text { (bijection), } a \mapsto a^{f}
$$

$\forall a, a^{i d}=a,\left|S_{n}\right|=n!$.

Example:

$$
\begin{aligned}
& f:\binom{12345}{42531}
\end{aligned} \quad \Longrightarrow \quad f^{-1}:\binom{42531}{12345}
$$

Composition of permutations:

$$
f:\left(\begin{array}{lll}
1 & 2 & 3
\end{array} 45\right), \quad g:\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
4 & 2 & 5 & 3
\end{array}\right),\left(\begin{array}{lll}
4 & 2 & 5
\end{array}\right)
$$

f has 3 inversions, g has $5, f g$ has 2 (check... not sure I got it right). Let $\operatorname{Inv}(g)$ be \# inversions of g, and

$$
\begin{gathered}
\operatorname{Inv}(f g)=\operatorname{Inv}(f)+\operatorname{Inv}(g) \quad \bmod 2 \\
t=\binom{123 \cdots n}{213 \cdots n}
\end{gathered}
$$

$\operatorname{Inv}(t)=1$. So for $(\forall f)(\operatorname{Inv}(f t) \equiv \operatorname{Inv}(f)+1 \quad \bmod 2),\left|S_{1}\right|=1$.
Definition: f is an even permutation if $\operatorname{Inv}(f) \equiv 0 \bmod 2$, an odd permutation if $\operatorname{Inv}(f) \equiv 0 \bmod 2$.
Corollary 5.25 \# even permutations $=\#$ odd permutations (assuming $n \geqslant 2$)
This is because $f \mapsto f \cdot t$ is a bijection between even and odd permutations. A transposition switches two elements,

$$
t_{i j}=\binom{12 \cdots i \cdots j \cdots n}{12 \cdots j \cdots i \cdots n}
$$

$\operatorname{Inv}\left(t_{i j}\right)=2(j-i)-1 \equiv 1(\bmod 2)$, so all transpositions are odd.
*: Transpositions generate $S_{n} .{ }^{7}$
Theorem 5.26 A permutation f is even $\Longleftrightarrow f$ is the product of an even number of transpositions.
Cycle notation: pictures of $1 \rightarrow 4 \rightarrow 3 \rightarrow 5,2 \rightarrow$ self, f is a 4 -cycle (don't count identity), g is $1 \rightarrow 4 \rightarrow 1$, $2 \rightarrow 3 \rightarrow 5$

Definition: A k-cycle is $i_{1} \mapsto c_{2} \mapsto \cdots \mapsto i_{k} \mapsto i_{1}$, everything else fixed.
Notation: $\left(i_{1} i_{2} \ldots i_{l}\right)$, so $f=(1435)=(4351), g=(14)(235)=(235)(14)$, this is cycle notation
Theorem 5.27 Every permutation is a product of disjoint cycles, unique up to the order of the factors.

[^5]Transpositions $(a b)$ are odd, $(123)=(12)(13)$ is even, $(1234)=(12)(13)(14)$, etc., gives
Theorem 5.28 $A k$-cycle is even $\Longleftrightarrow k$ is odd.
Sign of permutation is $\operatorname{sgn}(f)=(-1)^{\operatorname{Inv}(f)}=1$ if f is even, -1 if f is odd.
*: $\operatorname{sgn}(f g)=\operatorname{sgn}(f) \cdot \operatorname{sgn}(g)$
Definition: For A an $n \times n$ matrix,

$$
\operatorname{det}(A)=\sum_{f \in S_{n}} \frac{\operatorname{sgn}(f) \cdot \prod a_{i, i f}}{n!}
$$

(in definition, the product is the expansion term.)
Theorem 5.29 Let $A=\left[\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{n}\right]$, elementary operation is $\boldsymbol{a}_{i} \mapsto \lambda \boldsymbol{a}_{j}, j \neq i, \lambda$ a scalar, $\operatorname{det}\left(A^{\prime}\right)=$ $\operatorname{det}(A)$.
(There's a whole example here using $\lambda .$.)

Proof:

$\begin{aligned} \operatorname{det}\left[\boldsymbol{a}_{1}, \cdots \boldsymbol{a}_{i}-\lambda \boldsymbol{a}_{j} \cdots \boldsymbol{a}_{j} \cdots \boldsymbol{a}_{n}\right]=\operatorname{det} A & +\operatorname{det}[\boldsymbol{a}, \cdots \underbrace{\left[-\lambda \boldsymbol{a}_{j}\right]}_{i} \boldsymbol{a}_{j} \cdots \boldsymbol{a}_{n}]=(-\lambda) \operatorname{det}\left[\boldsymbol{a}_{1}, \cdots, \boldsymbol{a}_{j}, \boldsymbol{a}_{j}, \ldots, \boldsymbol{a}_{n}\right]=0 \\ A & =\left[\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \ldots, \boldsymbol{a}_{n}\right] \quad\left(\boldsymbol{a}_{1}=\boldsymbol{b}+\boldsymbol{c}\right) \\ B & =\left[\boldsymbol{b}, \boldsymbol{a}_{2}, \ldots, \boldsymbol{a}_{n}\right] \\ C & =\left[\boldsymbol{c}, \boldsymbol{a}_{2}, \ldots, \boldsymbol{a}_{n}\right] \\ D & =\left[\lambda \boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \ldots, \boldsymbol{a}_{n}\right]\end{aligned}$
$\operatorname{det}(D)=\lambda \operatorname{det} A$. Warning: $A \neq B+C, D \neq \lambda A$.
If $\boldsymbol{a}_{1}=0$ then $\operatorname{det} A=0$, if $\exists i \neq j$ such that $\boldsymbol{a}_{i}=\boldsymbol{a}_{j}$ then $\operatorname{det} A=0$
Theorem 5.30 If two columns of A are equal then $\operatorname{det} A=0$
Proof: We can match up the expansion terms into pairs that cancel.
Corollary $5.31 \operatorname{det} A$ doesn't change if we subtract any linear combination of columns other than \boldsymbol{a}_{i} from \boldsymbol{a}_{i}.

Corollary 5.32 If rank $A<n$ then $\operatorname{det} A=0$
Proof: $\operatorname{rank} A<n \Longleftrightarrow$ columns linearly dependent $\Longrightarrow(\exists i)\left(\boldsymbol{a}_{i} \in \operatorname{Span}\left(\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{i-1}, \boldsymbol{a}_{i+1}, \ldots, \boldsymbol{a}_{n}\right)\right.$, subtract \Longrightarrow get 0 column \Longrightarrow det $=0$

This means Gaussian elimination "works." ${ }^{8}$ Can look up what Gaussian elimination is online. Another important fact:

Theorem 5.33 If we switch columns $A \rightarrow A^{\prime}$, $\operatorname{det} A^{\prime}=-\operatorname{det} A$.
More generally, if we apply $f \in S_{n}$ to the columns of $A, A \mapsto A^{f}$, $\operatorname{det}\left(A^{f}\right)=\operatorname{sgn}(f) \operatorname{det} A$.
Q: Elementary operations don't change the rank of A.

[^6]Corollary $5.34 \operatorname{det} A=0 \Longleftrightarrow \operatorname{rank}(A)<n$.
Theorem 5.35 (Fundamental Theorem of Algebra) If $f(x)$ is a polynomial over \mathbb{C} and $\operatorname{deg}(f) \geqslant 1$ then $(\exists \alpha \in \mathbb{C})(f(\alpha)=0), \therefore$ if f has degree n then $f(x)=a_{n}\left(x-\alpha_{1}\right) \cdots\left(x-\alpha_{n}\right)$

Also (new theorem), if $f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}, \operatorname{deg} f=n$ if $a_{n} \neq 0$ then $f(x)=(x-\alpha) g(x), g$ a polynomial, i.e. $x-\alpha \mid f(x)$. ($)$
$\operatorname{deg}(0)=\infty$, where 0 is seen as a polynomial (def of polynomial is that $a_{0} \neq 0$.) Also,

1. $\operatorname{deg}(f g)=\operatorname{deg}(f)+\operatorname{deg}(g)$
2. $\operatorname{deg}(f+g) \leqslant \max \{\operatorname{deg}(f), \operatorname{deg}(g)\}$
3. if $\operatorname{deg}(f) \neq \operatorname{deg}(g)$, then $=$ same.

For $f(x)=x^{n}-1=\prod_{i=0}^{n-1}\left(x-\omega_{i}\right)$, where $\omega_{0}, \omega_{1}, \ldots, \omega_{n}$ the nth roots of unity,

$$
\omega_{j}=\cos \left(\frac{2 \pi j}{n}\right)+i \sin \left(\frac{2 \pi j}{n}\right)
$$

The order of ω_{j} is the smallest $k \geqslant 1$ such that $\omega_{j}^{k}=1$, e.g. the order of ω_{1} is n.
Definition: ω_{j} is a primitive nth root of unity if its order is n.
2: Prove: ω_{j} is a primitive nth root of unity $\Longleftrightarrow \operatorname{gcd}(j, n)=1$.
Corollary 5.36 \# primitive nth roots of unity is $\phi(n)$.
2: Suppose ω is an nth root of unity, $\omega^{n}=1$, then if $k=$ order of ω then $k \mid n \Longrightarrow \omega$ is a positive k th root of unity.

Conversely, if $k \mid n$, then every k th root of unity is also an nth root of unity:

$$
z^{k}=1 \Longrightarrow z^{n}=\left(z^{k}\right)^{\frac{n}{k}}=1^{\frac{n}{k}}=1
$$

Let $U_{n}=\{$ set of primitive nth roots of unity $\}, V_{n}=\{$ all nth roots of unity $\}$.

$$
V_{n}=\uplus_{d \mid n} U_{d}, \quad n=\left|V_{n}\right|=\sum_{d \mid n} \underbrace{\left|U_{d}\right|}_{\phi(d)}
$$

$n=\sum_{d \mid n} \phi(d), x^{n}-1=\prod_{d \mid n} \Phi_{d}(x) . x^{n}-1=\prod \omega(x-\omega)$, where ω is an nth root of unity,

$$
\Phi_{n}(x)=\prod_{\omega}(x-\omega)
$$

ω the same, $\operatorname{deg}\left(\Phi_{n}\right)=\phi(n)$, the nth cyclotomic polynomial

$$
\begin{aligned}
\Phi_{1}(x) & =x-1 \\
\Phi_{2}(x) & =x+1 \\
\Phi_{3}(x) & =\left(x+\frac{1}{2}+i \frac{\sqrt{3}}{2}\right)\left(x+\frac{1}{2}+i \frac{\sqrt{3}}{2}\right)=x^{2}+x+1 \\
\Phi_{4}(x) & =(x+i)(x-i)=x^{2}+1 \\
\Phi_{5}(x) & =\frac{x^{5}-1}{x-1}=x^{4}+x^{3}+x^{2}+x+1 \\
& \Longrightarrow(x-1) \Phi_{5}(x)=x^{5}-1 \\
x^{6}-1 & =\prod_{i}=1^{6} \Phi_{i}(x)=x^{2}-x+1 \\
\Phi_{6}(x) & =x^{2}-x+1 \\
\Phi_{7}(x) & =\frac{x^{7}-1}{x-1}=x^{6}+\cdots+x+1 \\
\Phi_{8}(x) & =\frac{x^{8}-1}{x^{4}-1}=x^{4}+1
\end{aligned}
$$

(There's some algebra in there didn't write down.) Erdös found that the coefficients here get very large.
Q: All cyclotomic polynomials have integer coefficients.
$n \times n$ matrix A, if \boldsymbol{x} is a vector $\boldsymbol{x} \neq \mathbf{0}$ and $\exists \lambda$ scalar such that $A \boldsymbol{x}=\lambda \boldsymbol{x}$ then we call \boldsymbol{x} an eigenvector to eigenvalue λ.
λ is an eigenvalue if $\exists \boldsymbol{x} \neq \mathbf{0}$ such that $A \boldsymbol{x}=\lambda \boldsymbol{x}$.

$$
A x=\lambda x=\lambda I x \Longrightarrow \lambda I x-A x=0 \Longrightarrow(\lambda I-a) \boldsymbol{x}=0
$$

λ an eigenvalue $\Longleftrightarrow \exists x \neq 0:(\lambda I-A) \boldsymbol{x}=0 \Longleftrightarrow \lambda I-A$ is singular $\Longleftrightarrow \operatorname{det}(\lambda-A)=0$.
An $n \times n$ matrix $f_{A}(t)=\operatorname{det}(t I-A)=$ polynomial of degree n. Sketches the matrix out, get

$$
\operatorname{det}=t^{n}-\underbrace{\left.\sum a_{i i}\right)}_{\operatorname{trace}_{(A)}} t^{n-1} \pm \cdots+(-1)^{n} \operatorname{det} A
$$

Corollary 5.37λ is an eigenvalue of $A \Longleftrightarrow f_{A}(\lambda)=0, \lambda$ is a root of the characteristic polynomial.
Something coordinate related:

$$
\binom{\boldsymbol{i}^{\prime}}{\boldsymbol{j}^{\prime}}=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)\binom{\boldsymbol{i}}{\boldsymbol{j}}
$$

Say $R_{\theta}=$ this matrix, the rotation matrix. Then $R_{\alpha+\beta}=R_{\alpha}+R_{\beta}$, shows

$$
\left(\begin{array}{cc}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{array}\right)\left(\begin{array}{cc}
\cos \beta & -\sin \beta \\
\sin \beta & \cos \beta
\end{array}\right)=\left(\begin{array}{cc}
\cos (\alpha+\beta) & -\sin (\alpha+\beta) \\
\sin (\alpha+\beta) & \cos (\alpha+\beta)
\end{array}\right)
$$

Q: $\boldsymbol{x}=\binom{x_{1}}{x_{2}}$ and $\boldsymbol{x}^{\prime}=R_{\theta} \boldsymbol{x}$ then θ is the angle between \boldsymbol{x} and \boldsymbol{x}^{\prime}.
So

$$
f_{R_{\alpha}}(t)=\left|\begin{array}{cc}
t-\cos \alpha & \sin \alpha \\
-\sin \alpha & t-\cos \alpha
\end{array}\right|=(t-\cos \alpha)^{2}+(\sin \alpha)^{2}=t^{2}-2 \cos \alpha t+1
$$

eventually get $\lambda_{1,2}=\cos \alpha \pm i \sin \alpha$.
Recall that a digraph is strongly connected if $h=$ period $=\operatorname{gcd}$ of lengths of all closed walks.

2: $\operatorname{Period}(x)=\operatorname{gcd}$ of all closed walks starting at x. If G is strongly connected $\Longrightarrow(\forall x \in V)(\operatorname{period}(x)$ is the same $)$
Q: Period is multiple of $k \Longleftrightarrow$ graph can be divided into k clusters around a circle such that all edges go from one cluster to the next.

Digraph associated with an $n \times n$ matrix: $i \rightarrow j \Longleftrightarrow a_{i j} \neq 0$.
Q: For a stochastic matrix A, when does A^{n} converge?
Assume G is the digraph associated with A, G strongly connected, such A is called irreducible.
Theorem $5.38 A^{n}$ converges $\Longleftrightarrow G$ is aperiodic.
means period $=1$ corollary to Frobenius-Perron theorem.
Stationary distribution. Say $\boldsymbol{x}_{t+1}=\boldsymbol{x}_{t} T$,

$$
\boldsymbol{x}_{t}=\boldsymbol{x}_{0} T^{t}
$$

evolution of the Markov Chain. The stationary distribution is \boldsymbol{x} such that $\boldsymbol{x} T=\boldsymbol{x}$, the left eigenvector to eigenvalue. (note that $\boldsymbol{v}^{T}=[1 \cdots 1]$ is a right eigenvector). If have a strongly-connected Markov chain, then \exists a unique stationary distribution.

Theorem 5.39 1. For all finite Markov chains, \exists a stationary distribution.
2. If the corresponding graph is strongly connected (=Markov chain irreducible), then the stationary distribution is unique.

A regular graph of degree d has $(\forall x)(\operatorname{deg}(x)=d)$. For A the adjacency matrix,

$$
a_{i j}=\left\{\begin{array}{l}
1 \text { if } i \sim j \\
0 \text { otherwise }
\end{array}\right.
$$

The transition matrix is then $T=\frac{1}{d} A=\left(p_{i j}\right), T^{t}=\left(p_{i j}^{(t)}\right)$. The largest eigenvalue is $\lambda_{1}=d$, then $\lambda_{i}:=\max _{2 \leqslant i \leqslant n}\left|\lambda_{i}\right| \leqslant d$.

Theorem $5.40\left|p_{i j}^{(t)}-\frac{1}{n}\right| \leqslant\left(\frac{\lambda}{d}\right)^{t}$
($n=|V|$ as always.) So the convergence rate is governed by the eigenvalue gap, and this is a basic principle. For $A, B n \times n$ matrices,

Theorem $5.41 \operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$
this can be looked up in "the resources."
©: $\operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{det}(A)}$
Definition: A, B are similar, $A \sim B$, if $\exists S, S^{-1}$ such that $B=S^{-1} A S$.
This is an equivalence relation (If $A \sim B$ then $\operatorname{det}(A)=\operatorname{det}(B)$ (Hint: use $\operatorname{det}(A B)$ formula).
2: $f_{A}(x)=\operatorname{det}(x I-A)$ the characteristic polynomial, If $A \sim B$ then $f_{A}(x)=f_{B}(x)$.

$$
f_{D}(x)=\operatorname{det}\left(\begin{array}{ccc}
x-\lambda_{1} & \cdots & 0 \\
& \ddots & \\
0 & & x-\lambda_{n}
\end{array}\right)=\prod\left(x-\lambda_{i}\right)
$$

Example: $A=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ is not diagonalizable. Proof by contradiction: assume $\exists S, S^{-1}$, then

$$
f_{A}(x)=\operatorname{det}(x I-A)=(x-1)^{2}
$$

So if A is diagonalizable, then $A \sim I, S^{-1} A S=I, A=S I S^{-1}=I, \rightarrow \leftarrow$.
Q: $\left.{ }^{*}\right)$ Prove: if all roots of f_{A} are distinct, then A is diagonalizable.
Definition: An eigenbasis for A is a basis of F^{n} consisting of eigenvectors of A, i.e. n linearly independent eigenvectors.

Theorem 5.42 A is diagonalizable $\Longleftrightarrow \exists$ an eigenbasis.
Proof: A is diagonalizable $\Longleftrightarrow \exists S, S^{-1}$:

$$
S^{-1} A S=D=\left(\begin{array}{ccc}
\lambda_{1} & & 0 \\
& \ddots & \\
0 & & \lambda_{n}
\end{array}\right)
$$

$\Longleftrightarrow A S=S D=\left[s_{1} \ldots s_{n}\right] D=\left[\lambda_{1} s_{1}, \ldots, \lambda_{n} s_{n}\right] \Longleftrightarrow$ all s_{i} are eigenvalues \Longleftrightarrow eigenbasis. $(S=$ [s_{1}, \ldots, s_{n}], columns linearly independent.)

The standard inner product on \mathbb{R}^{n} is

$$
\boldsymbol{x} \cdot \boldsymbol{y}:=\boldsymbol{x}^{T} \boldsymbol{y}=\sum_{i=1}^{n} x_{i} y_{i}
$$

with the dot product defined as usual. Define the norm (length) of \boldsymbol{x} to be $\|\boldsymbol{x}\|=\sqrt{\boldsymbol{x}^{T} \boldsymbol{x}}=\sqrt{\sum x_{i}^{2}}$.
Q: Cauchy-Schwarz: $\left|\boldsymbol{x}^{T} \boldsymbol{y}\right| \leqslant\|\boldsymbol{x}\| \cdot\|\boldsymbol{y}\|$. Prove this based on $\operatorname{Var}(X) \geqslant 0, E\left(X^{2}\right) \geqslant E(X)^{2}$
We say \boldsymbol{x} and \boldsymbol{y} are orthogonal if $\boldsymbol{x}^{T} \boldsymbol{y}=0$, and a set of vectors is orthogonal if they are pairwise orthogonal.

Q: If $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{k}$ are nonzero, orthogonal vectors, then they are linearly independent.
A basis $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}$ is orthonormal if it is orthogonal and $\left\|\boldsymbol{v}_{i}\right\|=1$.
Q: Any orthonormal set of vectors can be completed to an orthonormal basis.
An $n \times n$ real matrix A is orthogonal if $A^{T} A=I$. (From now on, assume every matrix is $n \times n$ and real.) For $A=\left[a_{1}, \ldots, a_{n}\right]$,

$$
\boldsymbol{a}_{i}^{T} \boldsymbol{a}_{j}=\left\{\begin{array}{l}
1 \text { if } i=j \\
0 \text { if } i \neq j
\end{array} \quad \Longleftrightarrow \boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{n}\right. \text { ONB }
$$

Now if $A^{T} A=I$ then $\exists A^{-1}=A^{T}$ then $A A^{T}=I \Longrightarrow A^{T}$ orthogonal \Longrightarrow rows of A are ONB.
Theorem 5.43 If A is orthogonal then $(A \boldsymbol{x})^{T}(A \boldsymbol{y})=\boldsymbol{x}^{T} \boldsymbol{y}$.
(Orthogonal matrices correspond to "congruences" of \mathbb{R}^{n}.)
Proof:

$$
\begin{array}{r}
(A B)^{T}=B^{T} A^{T} \\
(A x)^{T}=x^{T} A^{T} \\
(A x)^{T}(A y)=x^{T} A^{T} A y=x^{T} I y=x^{T} y
\end{array}
$$

Define the spectral norm of A as

$$
\|A\|=\max _{x \in \mathbb{R}^{n}, x \neq 0} \frac{\|A x\|}{\|x\|}
$$

Q: $\exists \max$
Note that if λ is an eigenvalue then $\|A\| \geqslant|\lambda|$.
Proof:

$$
A \boldsymbol{x}=\lambda \boldsymbol{x},\|A \boldsymbol{x}\|=\|\lambda \boldsymbol{x}\|=|\lambda\||x|\|
$$

last equality is , then

$$
\|A\| \geqslant \frac{\|A x\|}{\|x\|}=|\lambda| \checkmark
$$

Q: (*) This is true if $\lambda \in \mathbb{C}$.
Then states spectral theorem.

[^0]: ${ }^{1} \mathrm{WLOG}=$ "without loss of generality". Used in a proof when a simplifying assumption is made such that both (a) the proof using the assumption is significantly shorter than the full proof (b) completing the proof without the assumption is straightforward. In the current proof, we know that $p \mid a b$ and are trying to prove that $p \mid a$ or $p \mid b$. In the full proof, we would consider three cases: (1) $p \mid a$ and $p \mid b(2) p \nmid a(3) p \nmid b$. In case 1 the claim is trivially true, and if we can prove case 2 , the proof of case 3 will be identical. Thus WLOG, we need only consider case 2. (MS)

[^1]: 2 "So for whatever reason, on one sunny afternoon Little Fermat decided to look at the following..."

[^2]: ${ }^{3}=$ Challenge
 4 "Hadamard was French, and that means you put letters at the beginning and end which aren't pronounced, to confuse the enemy."

[^3]: ${ }^{5}$ Also written "w.h.p." Means in some limit, the probability of an event A occurring is one, which is different from event A always occurring. When a coin is flipped n times, the probability a head comes up at least once is small but finite. As $n \rightarrow \infty$, $P($ at least one H$)=1$, even though the infinite sequence TTTT. . could occur.

[^4]: 6 "Connected for pedestrians, not for automobiles. Or bikes. I like riding my bike the wrong way.. at least I know who is hitting me."

[^5]: ${ }^{7}$ Says written on an open-shelf math library in Germany: "Dear patrons: please remember that transpositions generate S_{n}."

[^6]: 8 "The goal is to tame the determinant, this horrible expression, by making as many zeros as possible."

