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1 Preliminaries

Definitions of sets. A � t1, 2, 3, 3u is the set with members 1, 2, and 3. |A| � 3, read as the cardinality or
size of A is 3. @ is the “universal quantifier.” Notation:

p@a P AqpD!b P Bqpb � fpaqq
means “for all a in A there exists a unique b in B such that b � fpaq.” The number of functions AÑ B is
|B||A| � |BA|, define

BA � tf | f : AÑ Bu
 stands for negation. The Cartesian product is

A�B � tpa, bq | a P A, b P Bu,
and |A � B| � |A||B|. A relation is a subset R � A � B, “relation between A and B.” A relation on A is
R � A�A.

Example: A � R, a   b with a, b P A, have relation  ,

R � tpa, bq | a   bu,
write aRb.

R is a transitive relation if
p@ a, b, cqpif aRb and bRc then aRcq.

A reflexive relation has p@aqpaRaq, a symmetric relation has p@a, bqpif aRb then bRaq. R is an equivalence
relation if it is reflexive, symmetric, and transitive. A partition of a set A is

pT1, . . . , Tmq : Ti � A, A � T1 Z T2 Y . . . .Z TM , Ti � H,
where Z means disjoint union, applies only if T1 X T2 � H.

Every partition of A defines a unique equivalence relation on A. In fact, this is a 1-to-1 correspondence
(bijection), DO. (�=“do it, but do not hand it in.”)

�: a
b � c

d if ad � bc, show this is an equivalence relation on Z� pZzt0uq.
In an equivalence class (partition), a function of two items from the same class should also be in the same
class in the result set of that function.
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2 Number Theory

a divides b, written a|b, if pD kqpak � bq. For example, 7|21. a|1 ðñ a � �1, 1|a always, a|0 always (take
k � 0). Note that 0|0 by this definition. 0|a ðñ a � 0, p@aqpa|aq, p@aqpa| � aq. Also, pa� bq|pa2 � b2q.

Divisibility is

• Reflexive: a|a.
• Anti-symmetric pa|b and b|aq ùñ a � �b.
• Transitive (�)

Definition: a is congruent to b modulo m, written a � b mod m, if m|pa� bq.
(Also called “calendar arithmetic”, in relation to mod 7 congruence) Even integers are congruent mod 2,
odd integers are congruent mod 2, so congruence mod 2 is an equivalence relation.

�: p@mqpmod m congruence is an equivalence relationq

�: If a � x mod m and b � y mod m, then a� b � x� y mod m, a � b � x � y (all mod m).

Definition: Modulo m residue classes are the equivalence classes of the mod m congruence relations.

Theorem 2.1 There are exactly m of them, and we can do arithmetic on the residue classes.

Multiplication table modulo 5:

0 1 2 3 4
0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1

Definition: Divpaq � tb | b|au is the set of divisors of a.
Div�paq � tb ¡ 0 | b|au is the set of positive divisors of a.
Divpa, bq � Divpaq XDivpbq.
Definition: The greatest common divisor of a and b is the max element of Divpa, bq. Note that gcdp0, 0q is
defined to be zero, by point 2 of the definition below.

Theorem 2.2 (*) p@a, bqpDdqpDivpa, bq � Divpdqq and is unique up to sign.

Definition: If this holds, then d � gcdpa, bq.
Note that the theorem allows negative numbers, but the gcd does not. p@a, bqpgcdpa, bq � maxpDivpaq X
Divpbqq except when a � b � 0. By definition, d is a gcd of a and b if Divpa, bq � Divpdq. Equivalently, d
must satisfy the following conditions:

1. d|a and d|b
2. p@eqpif e|a and e|b then e|dq

Definition: a � Z � ta � x |x P Zu
For example, 3 � Z � t0,�3,�6,�9, . . .u.
Definition: Let A � Z. A is a subgroup if A � 0 and A is closed under subtraction (i.e. p@a, b P Aqpa� b P
Aq).
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Theorem 2.3 (Division Theorem)

p@a, b � 0qpD! q, rqpa � bq � r and 0 ¤ r   |b|q
Example: a � 100, b � 7. Solve 100 � 7 � q � r, where q is quotient and r is remainder. Get q � 14, r � 2.

A module is a set that is closed under subtraction. Example: p@dqpdZ is a moduleq
Theorem 2.4 if A � Z is a module then pDdqpA � dZq
Proof:

1. 0 P A since A � H ùñ Da P A such that a� a � 0.
2. �a P A since 0 P A, 0� a � �a
3. a, b P A ùñ a� b P A since �b P A, a��b P A
4. a P A ùñ aZ � A (all multiples of a belong to A) NTS: p@n P Zqpna P Aq Simple induction on n

Theorem 2.5 Let d be the smallest positive number in A. Then A � d � Z.

Proof:

1. A � d � Z: Need p@a P Aqpa P d � Zq. i.e. d|a. So, let a � dq � r, 0 ¤ r   d (note that this is positive
because of the initial claim). r � a � dq, a P A and d P A and d � q P A, so r cannot be positive, so
r � 0 ùñ a � dq ùñ d|a.

2. A � d �Z: Immediate from d P A ùñ td, d� d, d� d� d, . . .u and �d P A ùñ t�d,�d� d,�d� d�
d, . . .u.

Definition: c is a linear combination of a and b if pDx, yqpc � ax� byq
Example: 6 � 18 � 2loomoon

x

�30 � �1loomoon
y

Theorem 2.6 p@a, bqpDx, yqpax� by is a gcd of a and bq
Notation: @A,B � Z

1. A�B � ta� b | a P A, b P Bu
2. A�B � ta� b | a P A, b P Bu
3. AzB � ta P A | a R Bu
So, all linear combinations of a and b are a�Z�b�Z. Observation: a�Z�b�Z is a module. i.e. the difference

of two linear combinations of a and b, pax� byq � pau� bvq � apx� uq � bpy � vq so pDdqpaZ� bZ � dZq so
d is a linear combination of a, b because d P dZ � aZ� bZ.

Claim: d is the gcd of a and b.

Proof:

1. d|a because a � a � 1� b � 0
2. d|b similarly
3. let e|a and e|b. Claim: e|d. d P aZ� bZ ùñ pDx, yqpd � ax� byq. So, d|a ùñ e|ax and d|b ùñ e|by

together imply a|ax� by � d

�: Prove if both d and d1 satisfy the following then d � �d1:
1. d|a and d|b
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2. p@eqpif e|a and e|b then e|dq
Definition: A prime is a positive integer p ¥ 2 where Div�ppq � t1, pu
Definition: r has the prime property if p@a, bqpif r|ab then r|a or r|b and r � �1q.
Example: 6|3 � 4 so six does not have the prime property.

Note: 0 has the prime property. Also: if a ¥ 2 and a is not prime, then a does not have the prime property.

Theorem 2.7 if p ¥ 2 is a prime, then it has the prime property.

�: The uniqueness of prime factorization (the fundamental theorem of arithmetic) is an immediate conse-
quence.

Proof: Lemma: gcdpak, bkq � k � gcdpa, bq. Let d � gcdpa, bq � ax � by. Need a kd � gcdpak, bkq. Know
that kd|ak and kd|bk, so d|a and d|b. If e|ak and e|bk then e|dk because d � ax � by, dk � ak � x � bk � y
since e| both right terms.

Supposing p ¥ 2, p prime, p|a � b, we need p|a or p|b. WLOG,1 assume p - a, and prove p|b. Then
gcdpa � b, p � bq � b � gcdpa, pq by lemma. But that implies gcdpa, pq � 1 because Div�ppq � t1, pu. Since
p|gcdpab, pbq, p|b.
�: Learn Euclid’s Algorithm.

Proposition 2.8 a|b and b|a ðñ a � �b.
Proof: ð `

. So for ñ:

a|b : Dk, b � ak

b|a : Dl, ab � bl

a � bl � akl.
a� akl � 0, a � 0 ùñ b � ak � a� 0 � 0

`
,

ap1� klq � 0, 1 � kl ùñ k � �1, b � �a`.

As a consequence, the gcd is unique up to sign.

Proof: Suppose d and d1 are both gcd’s of a and b. Then

1. d|a, d|b.
2. d is a multiple of all common divisors, including d1: d1|d. Analogously, d|d1 ùñ d � �d1.

Definition: a and b are relatively prime if gcdpa, bq � 1.

Definition: a � b mod m means m|a� b
Prove that mod is reflexive by a � a mod m via p@xqpx|0q. Prove symmetric by a � b mod m ùñ b �
a mod m via p@xqpx|c ùñ x| � cq. Transitive by a � b mod m and b � c mod m ùñ a � c mod m via
m|x and m|y ùñ m|x� y with x � a� b and y � b� c.
Theorem 2.9 If a � b mod m then gcdpa,mqloooomoooon

d

� gcdpb,mqloooomoooon
d1

.

1WLOG=”without loss of generality”. Used in a proof when a simplifying assumption is made such that both (a) the
proof using the assumption is significantly shorter than the full proof (b) completing the proof without the assumption is
straightforward. In the current proof, we know that p|ab and are trying to prove that p|a or p|b. In the full proof, we would
consider three cases: (1) p|a and p|b (2) p - a (3) p - b. In case 1 the claim is trivially true, and if we can prove case 2, the proof
of case 3 will be identical. Thus WLOG, we need only consider case 2. (MS)
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Proof: m|a� b.
Divpdq � Divpa,mq ?� Divpb,mq � Divpd1q,

so need to prove:

p@xqpx P Divpa,mq ?ðñ x P Divpb,mqq
px|a and x|mq ?ðñ px|b and x|mq

ñ, need to prove: x|b and x|m. Assume x|a and x|m, need to prove x|b. Assume a � b pmq, x|a, x|m D.C.
x|b.
Proof: m|a� b D y : a� b � my, then b � a�my, put in x’s, ùñ x|a�my`. ð done the same way.

A residue class mod m � tx|x � ku, number of residue classes mod m is m. They are equivalence classes.

Corollary 2.10 If L is a residue class mod m and pDx P Lqpgcdpx,mq � 1q then p@x P Lqpgcdpx,mq � 1q
Proof: Thm 2.9

Definition: L is a reduced residue class mod m if L is a residue class mod m and its members are relatively
prime to m. Denote via rasm for the residue class a mod m. The number of reduced residue classes mod m
is called φpmq, called Euler’s phi function.

So φpmq is the # of integers k in the interval a ¤ k ¤ m such that gcdpk,mq � 1. Have φp1q � 1, φp2q � 1,
φp3q � 2, φp4q � 2, φp5q � 4, φp6q � 2, etc.

If p is a prime, then φppq � p� 1.

�: gcdpa, p2q � 1 ðñ p|a
get that φpp2q � p2 � p. φpp3q � p3 � p2, in general have

φppkq � pk � pk�1 � pkp1� 1
p
q

�: If gcdpa, bq � 1 then φpabq � φpaqφpbq, called “φ is multiplicative.” (Not totally multiplicative, just if
gcd has this property.)

�:
¸
d|m

φpdq � m (but notes slightly more difficult than usual �’s)

¸
d|6
φpdq � φp1q � φp2q � φp3q � φp6q � 6,

¸
d|7
φpdq � φp1q � φp7q � 7,

where d|6 means summation over the positive divisors, etc.

Corollary 2.11 If n � pk1
1 � � � pks2 and the pi are distinct primes, then

φpnq �
s¹
i�1

φppkii q � n
¹
p|n
p1� 1

p
q,

p prime

Example: φp90q � φp2 � 9 � 5q � φp2q � φp9q � φp5q � 1 � 6 � 4 � 24 � 0 � p1 � 1
2 qp1 � 1

3 qp1 � 1
5 q, and

2p1� 1
2 q9p1� 1

3 q5p1� 1
5 q.
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Theorem 2.12
¸
p

1
p
� 8

�: Prove that infn
φpnq
n � 0. Note: limn�¡inf

φppq
p � 1 because p�1

p � 1� 1
p � 1

Claim: x2 � x mod 2.

Proof: 2
?

| x2 � x � xpx� 1q ùñ one of them even.

Claim: x3 � x mod 3

Proof: 3|x3 � x � xpx2 � 1q � xpx� 1qpx� 1q � px� 1qxpx� 1q
Claim: x5 � x mod 5

Proof: 5|x5 � x � xpx4 � 1q � xpx2 � 1qpx2 � 1q � px� 1qxpx� 1qpx2 � 1q, instead if x2 � 1 we would wish
x2 � 4 � px� 2qpx� 2q, but now x2 � 1 � x2 � 4 mod 5.

�: Prove in a similar manner: x7 � x (7), x11 � x (11).

Theorem 2.13 (Fermat’s Little Theorem) xp � x mod p, p prime.2

(Whenever p written without comment, assume is prime.) Call theorem stated this way p1q. An equivalent
statement, p2q, is

p@xqp@p primeqpif gcdpx, pq � 1 then xp�1 � 1 mod pq
Proof:

(2) ùñ (1): If gcdpx, pq � 1, then (2) ùñ xp�1 � 1 ppq, xp � x ppq. If gcdpx, pq � 1, i.e. p|x, then
e � 0 (p), xp � 0 (p).
(1) ùñ (2): We know xp � x ppq ùñ divide both sides by x: xp�1 � 1 ppq, because we are assuming
gcdpx, pq � 1. xp � x ppq, p|xp�x � xpxp�1� 1q, p|x ùñ p|xp�1� 1, by the prime product property.

�: If ax � ay mod m and gcdpa,mq � 1 then x � y mod m.

�: If ax � ay mod am then x � y mod m.

Theorem 2.14 (Euler-Fermat) If gcdpx,mq � 1 then xφpmq � 1 mod m.

(Note: lim
pÑ8

φppq
p

� 1)

Proof: Let a1, . . . , aφpmq be a set of representatives of all reduced residue classes.

Claim: xa1, . . . , xaφpmq is again a set of representatives of the reduced residue classes.

Proof: (1) p@iqpgcdpxai,mq � 1q, proof by gcdpx,mq � 1 and gcdpai,mq � 1.
(2) i � j ùñ xai � xaj mod m. Contrapositive is: xai � xaj mod m ùñ (by �ex.) ai � aj mod m
ùñ i � j.

ùñ
φpmq¹
i�1

ai �
φpmq¹
i�1

pxaiq � xφpmq
m¹
i�1

ailoomoon
A

mod m

get xφpmqA � A mod m, gcdpA,mq � 1 ùñ by �ex., xφpmq � 1 mod m

2“So for whatever reason, on one sunny afternoon Little Fermat decided to look at the following...”
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A sequence a0, a1, . . . is periodic with period t if p@nqpan�t � anq. t is a period, the period is the smallest
positive period. Equivalent definition: t is a period if p@k, lq, if k � l (mod t) then ak � al.

�: The period is the gcd of all periods.

�: Prove that if a{b a fraction, 0   a   b, gcdpb, 10q � 1, ùñ a{b is a periodic decimal.

a0 � 1, a, a2, . . . mod m, assume gcdpa,mq � 1. φpmq is a period of this sequence. aφpmq � 1 mod m
(Euler-Fermat).

If k, l ¥ 0, k � l mod φpmq then ak � al mod m.
If p prime, k, p ¥ 0, k � l mod p� 1, then ak � al mod p. In general, the period divides φpmq.
The period of the sequence tak mod mu is called the order of a mod m. (Assume gcdpa,mq � 1.)
In other words, the order of a mod m, ordmpaq, is the smallest k ¡ 0 such that ak � 1 mod m. [Euler-

Fermat tells us ordmpaq|φpmq].
Ex: ord5p2q � 4, ord7p2q � 3.

Definition: a is a primitive root mod p if ordppaq � p� 1.

Theorem 2.15 For any prime p, D a primitive root mod p

Ex: 2 is primitive root mod 5, 3 is primitive root mod 7. This theorem is non-trivial, can find online, etc.
10 � 3 mod 7 ùñ 10 primitive root mod 7.
1/7=0.142857, periodic. Let A � 142, 857, then 7A � 000, 000. Puzzle: 142,857 is the only 6-digit

number A such that A, 2A, . . . , 6A all have the same digits.

�: 1
p is in decimal periodic; period is ordpp10q

�: 10 is a primitive root mod 17. (Note means 1/17=0.BBB.., where B has 16 digits.

�: 1. Definition of gcd of any number of integers.
2. Prove gcd exists, is repr. as a linear combination.
3. gcdpa, b, cq � gcdpa, gcdpb, cqq.

2.1 Linear congruences

Claim: ax � b mod m is solvable ðñ gcdpa,mq|b.
Proof: 1. Necessity, i.e. pDxqp. . .q ùñ gcd . . .. Obs: If a � b mod m and r|m then a � b mod r. Pf:

transitivity of divisibilities, �.

Proof: d � gcdpa,mq, ax � b pmq ùñ ax � b (d), 0 � b (d), so d|b `
.

2. Sufficiency: gcd . . . ùñ pDxqp. . .q. d :� gcdpa.mq, assumption d | b. Dx0, y0, d � ax0 �my0, ax0 � d
mod m. a bdx0 � b

dd � b (mod m), with b
dx0 � x.

`
Case b � 1: ax � 1 (mod m), x the multiplicative inverse of a mod m (a�1 mod m). It exists ðñ
gcdpa,mq � 1.

Simultaneous congruences:

x � 1p8q �¡ x � 1p2q (1)
x � 5p7q (2)

x � 4p6q �¡ x � 4p2q (3)

Not solvable, since (1) and (3) contradict each other. In general,

x � apmq (4)
x � bpnq (5)

contradict each other if a � b mod gcdpm,nq.
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Corollary 2.16 If the system (4, 5) is solvable then a � b mod gcdpm,nq so this is a necessary condition
of solvability.

�: It is also sufficient.

Corollary 2.17 If gcdpm,nq � 1 then (4, 5) is always solvable.

Theorem 2.18 (Chinese Remainder Theorem) Consider the system

x � a1pm1q (6)
...

x � akpmkq (7)

If the mi are pairwise relatively prime, then a solution exists, and solution is unique modulo N :� m1 � � �mk.

Example: System

x � 2p5q
x � 1p6q
x � 3p7q

by CRT Dx satisfying these. Take 42, 35, 30, x � 42A � 35B � 30C, mod 5 gives 42a � 2, mod 6 gives
35B � 1, mod 7 gives 30C � 3. A exists because gcdp42, 5q � 1, etc. Literature for the CRT is Wikipedia,
very good description of theorem and proof.

Theorem 2.19 For system (6–7), if Dx it is unique modulo lcmpm1, . . . ,mkq �: L, where lcm stands for
“least common multiple”

Proof: Suppose

y � a1pm1q
...

y � akpmkq
Need to prove: x � y mod L, i.e. L|x� y.

�: Define lcm in full analogy with definition of gcd, prove D.
Proof: L|b ðñ p@iqpmi|bq by definition of lcm.

`
Theorem 2.20 (Euclid) D infinitely many primes.

Proof: (Euclid) Assume by contradiction that p1, . . . , pk are all the primes (p1 � 2). Let N � p1p2 � � � pk.
Then N � 1 ¥ 2 ùñ D prime p|N � 1 ùñ pDiqpp � pi, N � �1 mod p, N � 0 mod pi, so 1 � 0 mod p,
contradiction.

Example: Find x : x2 � 1p187q but x � �1p187q. Via CRT:

x � 1p17q
x � �1p11q

Solution in the form: x � A � 17�B � 11.

B � 11 � 1p17q B � �3p17q
A � 17 � �1p11q 6A � �1p11q

12A � �2p11q
A � �2p11q

So, x � �2 � 17��3 � 11 and x � �67. Check: p67q2 � 1p187q. That’s �67 � 1p17q and �67 � �1p11q so
it’s good!
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3 Counting

An n-set is a set of n elements, rns � t1, . . . , nu. The #k-subset of an n-set is
�
n
k

� � n!
k!pn�kq! .

“n choose k” In poker you get five cards, so
�

52
5

� � 52�51�50�49�48
5! . The bottom divides the sequences into

equivalence classes based on the “same cards”. Remember to make life easy when you can:
�
n
3

� � n!
3!pn�3q! �

npn�1qpn�2q
3! .

A permutation of a set A is an AÑ A bijection. The # of permutations of an n-set is n!. Will be taking
00 � 1.
A 3: lim

x,yÑ0
xy � mostly 1.

Pascal’s triangle, Pascal’s identity is�
n� 1
k � 1



�
�
n

k



�
�

n

k � 1




Combinatorial proof:
�
n
k

�
is #pk � 1q subsets containing special element,

�
n
k�1

�
is #pk � 1q-subsets avoiding

special elements... and get it from there, then gives binomial theorem.
READ: binomial theorem: px� yqn � °n

k�0

�
n
k

�
xn�kyk.

3.1 Asymptotic notation

Definition: For a sequence taiu, lim
nÑ8 an � A means p@ε ¡ 0qpDNqp@n ¡ Nqp|an � A|   εq. Interpret as

“for all sufficiently large n, an is within a threshold distance of A.” For an interval of size ε, as N gets large
the difference between an and A gets smaller.

Definition: an � bn are asymptotically equal if lim
nÑ8

an
bn
� 1

False version is just the negation of all quantifiers OR no limit exists.
Examples:

1. an � 3n2�5n�100 and bn � 3n2 are asymptotically equal. This is because 3n2�5n�100
3n2 � 1� 5n

3n2� 100
3n2 �

1.
2. Stirling’s formula:(memorize) n! � pne qn

?
2πn

3. πpxq � # primes ¤ x. So πp4q � 2, πp10q � 4, πp100q � 25, etc. One of the biggest theorems in math:

Theorem 3.1 (Prime Number Theorem)

πpxq � x

lnx

Proved in 1896 by Jacque Hadamard and Pierre de la Vallée Poussin.4

When is an � bn? Let

cn �

$'&
'%
an
bn

: bn � 0
� : an � 0, bn � 0
1 : an � bn � 0

Say an � bn if lim cn � 1. Under this definition, � is reflexive (proved), symmetric (proved), and transitive
(�).

Definition: fpxq � anx
n � an�1x

n�1 � � � � � a0 is a polynomial of degree n if an � 0.
3=Challenge
4“Hadamard was French, and that means you put letters at the beginning and end which aren’t pronounced, to confuse the

enemy.”
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Note that fpxq � anx
n. Also, lim

xÑ0

lnp1� xq
x

� 1.

�:
b

1� 1
n � 1 �?

Example:
�
n
3

� � npn�1qpn�2q
3! � n3

6

�: an � bn ¡ 1 ùñ ln an � ln bn? (Answer is “almost”.. find condition.)

Pascal’s triangle, define floor t u and ceiling r s, from Pascal’s triangle
�
n
tn2 u

� � � nrn2 s�. Have

p1� 1qn �
�
n

0



�
�
n

1



� � � � �

�
n

n



� 2n,

ùñ �
n
k

�   2n @k. So 2n ¡ � ntn2 u� ¡ 2n

n�1 , 2n

n   � ntn2 u�   2n. This all works because it relies on the rule that
the biggest must be bigger than the average.

�:
�
n
tn2 u

� � c s
n?
n

, c �? Use Stirling’s formula..

Claim: On is odd subsets, En even subsets, then |On| � |En|, if n ¥ 1.

Proof: 0n � p1 � 1qn =
�
n
0

� � r�n0� � �n2� � . . .s � r�n1� � �n3� � . . .s. Combinatorial proof, use a bijection:
rns � t1, . . . , nu, for A � rns, odd ùñ Ā � rnszA. For n odd, take one element out, etc..

O2k � O2k�1 � E2k�1

E2k � E2k�1 �O2k�1

Make a function f which toggles whether the element is in your subset of not:

f :

#
fpAq � Aztnu : n P A
fpAq � AY tnu : n R A

f is a bijection between even and odd sets (for n ¥ 0).

Note
tn2 u¸
k�0

�
n

2k



� 2n�1

A: Consider
tn4 u¸
k�0

�
n

4k



�? For what n is it 2n�2?

A: Show that

������
tn3 u¸
k�0

�
n

3k



� 2n

3

������   1.

Have
�
x
3

� � xpx�1qpx�2q
6 , even for complex numbers. Define

�
n
k

� � 0 for k ¡ n, then

p1� zqn � 1�
�
n

1



z �

�
n

2



z2 � � � � �

�
n

n



zn �

�
n

n� 1



zn�1 �

8̧

k�0

�
n

k



zk

and Newton’s Binomial Theorem is

p1� zqx �
8̧

k�0

�
x

k



zk
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For all complex numbers x, assuming |z|   1. Have

1
1� z � 1� z � z2 � � � � � p1� zq�1 �

8̧

k�0

��1
k



loomoon
p�1qk

p�zqk �
8̧

k�0

zk,

where ��1
k



� p�1qp�2q � � � p�kq

k!
� p�1qk.

This is how many way to pick k x’s, l y’s, and m z’s. Also, don’t forget that 1
1�t � 1 � t � t2 � t3 � � � � .

HW: show
1?

1� z � p1� zq
� 1

2 �
8̧

k�0

�� 1
2

k



p�zqk

3.2 Generating functions

Power series are the generating functions of the sequence an:

fpxq �
8̧

n�0

anx
n

fpxq � gpxq �
8̧

n�0

pan � bnqxn

fpxq � gpxq �
8̧

n�0

cnx
n pwhere cn �

ņ

k�0

akbn�kq

f 1pxq �
8̧

n�1

annx
n�1

Look at fib-gen, where the coefficients are the Fibonacci numbers. So, fpxq �
8̧

n�0

Fnx
n. Reduce, pulling

out factors and simplifying:

fpxq � F0 � F1x�
8̧

n�2

pFn�1 � Fn�2qxn

fpxq � x�
8̧

n�2

Fn�1x
n �

8̧

n�2

Fn�2x
n

fpxq � x� x � fpxq � x2 � fpxq
fpxq � x

1� x� x2

Theorem 3.2 (Trinomial)

px� y � zqn �
¸

k,l,m¥0,k�l�m�n

�
n

k, l,m



xkylzm,

where
�

n
k,l,m

� � n!
k!l!m! .

For
�

n
k,l,m

�
, think of n! total ways to distribute the cards, divided by the ways that k!, l!,m! could have been

distributed. Note that k � l �m � n.
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Theorem 3.3 (Multinomial)

px1 � � � � � xkqn �
¸

t1,...,tk¥0, t1�����tk�n

�
�����

n!
k¹
i�1

ti!

xt11 � � �xtkk

�
����

Claim the number of terms in the k-nomial theorem is
�
n�k�1
k�1

�
. Lots of reasoning here on why this would

be so: looking for number of solutions to the equation x1 � � � � � xk � n, for xi ¥ 0, xi P Z. Easier question
is same for y1 � � � � � yk � n, yi ¥ 1, by looking at putting k � 1 dividers in n places, get

�
n�1
k�1

�
. Now, let

yi :� xi � 1, yi ¥ 1,
°
yi � n� k, get

�
n�k�1
k�1

�
X

Definition: an � bn if lim
nÑ8

an
bn
� 1, replace 0

0 by 1.

Definition: an � opbnq, if lim
nÑ8

an
bn
� 0, abd 0

0 :� 0.

In this notation, an � op1q means lim
nÑ8 an � 0.

Obs: an � bn ðñ an � bnp1� op1qq, meaning Dcn, an � bnp1� cnq, where cn � op1q.
Note that an � opcnq, bn � opcnq ÷ anbn � opcnq, i.e. an � bn

?
n, cn � n.

Also, an � opbnq, an � opcnq ÷ an � opbn� cnq, but want this to be true, it is under condition bn, cn ¡ 0
(or both negative).

�: Is this statement T or F?

Definition: an � Opbnq if pDCqpfor all sufficiently large nq, i.e. pDn0qp@n ¥ n0q. This is equivalent to
|an| ¤ C|bn| for some C.) Say “the order of magnitude of an is ¤ the order of magnitude of bn.”

�: 100n2�7
5n�8 � Opnq

If an � opbnq, then an � Opbnq
Definition: an � Ωpbnq if bn � Opanq.
Definition: an � Θpbnq if an � Opbnq and an � Ωpbnq, i.e. pDC, c ¡ 0qpDn0qp@n ¥ n0qpc|bn| ¤ |an| ¤ C|bn|),
say “an and bn have the same order of magnitude.” We have to have “for n sufficiently large” here because
an � 0, bn � 0 could happen at a finite number of places or “within constant factors of each other.”

Definition: an polynomially bounded if pDCqpan � OpnCq.
Definition: an grows exponentially if pDc ¡ 0qpan � Ωpencqq
Theorem 3.4 If an is polynomially bounded and bn grows exponentially then an � opbnq.
In fact, bn

an
grows exponentially (assuming an � 0).

Theorem 3.5 lnx � opxq, i.e. lim
xÑ8

lnx
x
� 0.

Proof: L’Hôpital’s rule, get
plnxq1
x1

� 1{x
1
� 1
x
Ñ 0

In fact @c ¡ 0, lnx � opxcq, do by re-defining x, same kind of proof w/ LHR.
Now, how to prove that plnxq100 � opxq? Say

p lnx
100
?
x
q100 ùñ plnxq100

x
Ñ 0

.

Theorem 3.6 p@cqpc ¡ 0qplnx � opxcqq

12



3.3 Polynomial vs. exponential growth

Theorem 3.7 @C, C ¡ 0, nC � opencq, ex: n1000 � ope100?nq
Proof: lnx �100

?
n, plnxq100000 � opxq X

�: @c, d ¡ 0, p1 � cqnd grows exponentially. Meaning: Df, g ¡ 0 such that en
f   p1 � cqnd   en

g

for all
sufficiently large n

Ω notation read “an grows at least exponentially.” But O notation read an “is” exponential, even though
behaves more like an inequality.

�: Θ is an equivalence relation on sequences.

Theorem 3.8 If L � lim
nÑ8

an
bn

exists, then

1. If L � 1 then an � bn

2. If L � 0 then an � opbnq
3. If L � �8 then bn � opanq
4. If L � 0, � �8, then an � Θpbnq

Proof: �

Theorem 3.9 Suppose an ¥ 1. an is polynomially bounded ðñ ln an � Oplnnq.

Proof: �

lnn � Θplog2 nq because log2 n
lnn � 1

ln 2 . If πpxq � number of primes ¤ x, then πpxq � opxq, get x.99 � op x
ln x q,

because PNT gives πpxq � x
ln x ¡ x

x.01

Theorem 3.10 If lim
nÑ8

an
bn

exists :� L, have
�

2n
n

� � op4nq, because
�

2n
n

� � Θp 4n?
n
q (using Stirling’s formula)

Proof: �

Theorem 3.11 If an � Θpbnq and an, bn Ñ8, then ln an � ln bn

Suggests writing o with an “ear” to distinguish from O. o and O are notation from Landau � 1900, Ω,Θ
from Don Knuth. Notation not used here is ωpbnq � an if bn � opanq.

4 Finite Probability Spaces

Sample space = set of all possible outcomes of the experiment. Each outcome: elementary event. Usually
call Ω the sample space, A an event, A � Ω.

Definition: 1. Non-empty finite set Ω, the sample space.
2. A probability distribution P over Ω: P : Ω Ñ R. such that

(a) p@x P ΩqpP pxq ¡ 0q
(b)

¸
xPΩ

P pxq � 1

Elements of Ω are “elementary events”, then pΩ, P q is a finite probability space.
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If p@x P ΩqpP pxq � 1
|Ω| q then the space is uniform distribution.

An event is A � Ω, P pAq �
¸
xPA

P pxq. In particular, P pHq � 0, P pΩq � 1.

�: If A1, . . . , Ak � Ω, then P pA1 Y . . .YAkq ¤
ķ

i�1

P pAiq, union bound.

Equality holds ðñ the Ai are pairwise disjoint, i.e. they are mutually exclusive.

�: P pAYBq � P pAXBq � P pAq � P pBq (modular equation)

4.1 Conditional probability

A,B � Ω, B � H, then

P pA |Bq � P pAXBq
P pBq

is the probability of A conditional on B.

Definition: A, B � Ω are independent if P pAXBq � P pAqP pBq.
Definition: The trivial events are H,Ω.

�: If A is trivial then p@BqpA,B are independentq.
Consequence: if B � H then A,B are independent ðñ P pAq � P pA |Bq.
Theorem 4.1 (Complete probability) For a partition Ω � B1Z� � �ZBk, Bi � H, Z is “disjoint union”,

P pAq �
¸
P pA|BiqP pBiq

Proof: Have

P pA |BiqP pBiq � P pAXBiq
P pBiq P pBiq � P pAXBiq,

Ω � B1 Z � � � ZBk, A � pAXBiq Z � � � Z pAXBkq.
Proof of causes: Say we know P pS |Bq � 90%, P pSq � 5%, P pBq � 2%.
Q: What is P pB |Sq?

P pB |Sq � P pB X Sq
P pSq � P pBqP pS |Bq

P pSq � 0.02 � 0.9
0.05

� 2
5
� 0.9 � 0.36,

so 36%. Note that this used P pB X Sq � P pBq � P pS |Bq.
Definition: A,B positively correlated if P pA X Bq ¡ P pAqP pBq, negatively correlated if P pA X Bq  
P pAqP pBq.
Example: Roll a die, A event it’s prime, B event it’s odd. Then P pAq � 1

2 , P pBq � 1
2 , P pAXBq � 1

3 ùñ
positively correlated.

�: For what n are the following events independent: A : 2 |x, B : 3 |x. Yes if 6 |n. Pick a number x from
t1, . . . , nu. For n � 8, P pAq � 1

2 , P pBq � 1
4 , P pAXBq � 1

8 � P pAqP pBq.
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If P is uniform, then

P pAq �
¸
xPA

P pxqloomoon
1
|Ω|

� |A|
|Ω| ,

i.e. “# of good cases”/“# of all cases”.
Experiment: n coin flips, get an outcome such as HTTHTTT, |Ω| � 2n.
Deal 5 cards from standard deck of 52 cards, a “poker hand”, then |Ω| � �52

5

�
.

For events A,B,C � Ω, P pAXB X Cq � P pAqP pBqP pCq plus pairwise independent. Without this last
bit, can have A � B non-trivial and C � H, holds but not pairwise independent.

�: If A,B,C independent, then

• A, B Y C also independent,
• A, B X C also independent,
• A, BzC also independent.

Means A,B, C̄ independent (where C̄ � ΩzC).

Definition: A1, . . . , Ak � Ω are independent if @I � rks,

P p
£
iPI
Aiq �

¹
iPI

P pAiq,

2k conditions. Turns out 2k conditions actually 2k�k�1. (Need only for |I| ¥ 2, it is automatically satisfied
for |I| ¤ 1.)

If |I| � 1, singleton, I � tiu,
£
jPI

Aj � Ai.

If I � H,
¹
iPH

anything � 1.
£
iPH

Ai � Ω.

�: Experiment: n coin flips. Space: uniform. Ai=“ith coin comes up heads” ùñ A1, . . . , An are
independent, P pAiq � 1

2 .

4.2 Random variables

Function X : Ω Ñ R. The expected value of X is

EpXq �
¸
xPω

XpxqP pxq,

the weighted average of outcomes. Over a uniform space,

EpXq �
¸
Xpxq 1

|Ω| �
°
Xpxq
|Ω| ,

the simple average.

�: minX ¤ EpXq ¤ maxpXq

�: If X,Y : Ω Ñ R, then EpX � Y q � EpXq � EpY q.
Have EpcXq � cEpXq for c P R, so
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Theorem 4.2 (Linearity of expectation) For ai P R, Xi : Ω Ñ R,

Ep
ķ

i�1

aiXilooomooon
linear comb.

q �
ķ

i�1

aiEpXiq.

or if X � c1Y1 � c2Y2 � � � � then EpXq � c1EpY1q � c2EpY2q � � � � .
Theorem 4.3

Epxq �
¸
rPR

rP pX � rq,

but r really P rangepXq, because if not the probability is 0.

Why? “X � r” is an event, namely tx P Ω |Xpxq � ru � X�1prq. Anyhow, proof is �.

Definition: The indicator variable of event A is

ϑApxq �
#

1 if x P A
0 if x R A

If n � |Ω|, the # events � 2n, #(0,1)-random variables (indicator variables) � 2n. Every random variable
that takes values 0, 1 is the indicator variable of an event: A � Y �1p1q, Y � ϑA,

EpϑAq � 1 � P pϑAq � 1q � 0 � P pϑA � 0q � P pAq
This is very important: EpϑAq � P pAq, i.e. the event “ϑA � 1” is A.

For X : # heads in n coin flips,

EpXq �
ņ

r�0

rP pX � rq �
¸
r�0n

r
�
n
r

�
2n

� n

2
,

the last step by intuition about coin flips. (Notation: pX � rq means ta|Xpaq � ru). Can prove this intuition
by knowing r

�
n
r

� � n
�
n�1
r�1

�
(�), sum above

� n
1
2n

ņ

r�1

�
n� 1
r � 1



� n

2n�1

2n
� n

2
.

For Yi the indicator of event ith coin is H, X � °Yi,

EpXq �
¸
EpYiq �

ņ

i�0

P pYiq � n

2
,

so indicator functions nicer.

5 Graph Theory

A graph is a set of vertices and edges, for the moment unordered pairs of vertices, called an undirected graph.
Relation on V is adjacency: v, w P V are adjacent if tv, wu P E. The degree of vertex x is # of vertices
adjacent to x. G is regular of degree k if every vertex has degree k. For k � 1 it’s pairs of points; for k � 2
it’s a disjoint union of cycles, and for k � 3 it’s already an infinite set of graphs (trivalent).

Can do some work, convince yourself that:
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Theorem 5.1 If G is regular of degree 3, then |V | is even.

Proof: ¸
xPV

degpxq � 2m,

where m will always stand for |E|.
Call the fact that

¸
xPV

degpxq � 2m the “handshake theorem.” Call Kn the complete graph on n vertices,

m � �n2�. Kn the empty graph, m � 0. For every graph, 0 ¤ m ¤ �n2�.
The complement of G � pV,Eq is G � pV,Eq, where tx, yu P E ðñ x, y P V , x � y, and tx, yu R E.
Bipartite graph: vertices can be colored red and blue such that adjacent vertices never have the same

color. Ex: 6 vertices in a hexagon, put in 3 diagonals intersecting at center. A bipartite graph cannot contain
a cycle of length 3, i.e. K3 � C3. Cycle Cn is bipartite ðñ n is even. So, generalization:

Theorem 5.2 G is bipartite ðñ G contains no odd cycles.

We’ve done “only if” step. Walk of length n in a graph: v0�v1�. . .�vn such that tvi�1, viu P E, i � 1, . . . , n.
A path in E is a walk without repeated vertices. Write the number of walks of length k as BnKn (in the
complete graph). If G is regular of degree d, the # walks of length k is ndk. The number of paths of length
k is npn� 1q � � � pn� kq{2.

The complete bipartite graph Kk,l looks like a line of k red next to a line of l blue, edge between every
red and blue. n � k � l, m � kl.

Definition: An isomorphism between G � pV,Eq and H � pW,F q is a bijection f : V ÑW which preserves
adjacency: p@v1, v2 P V q, v1 �G v2 ðñ fpv1q �H fpv2q.
Definition: G and H are isomorphic if Df : GÑ H an isomorphism.

It’s an open problem whether you can prove non-isomorphism in polynomial time. A graph that is often
used as a counterexample is Petersen’s graph:

Length of shortest cycle is girth, diameter is maxx,yPV distpx, yq, distance px, yq is length of shortest path
from x to y (8 if E such path). Petersen’s graph has girth 5, diameter 2, regular of degree 3.

�: If G has girth 5 and is regular of degree r then n ¥ r2 � 1.

�: If G has diam=2 and is regular of deg=r then n ¤ r2 � 1.

Gives a funky graph (get fm someone),

�: This is isomorphic to Petersen’s graph.
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Definition: y P V is accessible from x P V if DxØ y path.

x acc y, x acc y ùñ y acc x, transitive:

�: Prove: if Dx . . . y walk then Dx . . . y path.

Definition: The equivalence classes of “accessibility” are the connected components of G.

Definition: G is connected if @x, y, x acc y, i.e. there is just 1 connected component

Definition: G is a tree if G is connected and has no cycles.

Example: Pn, line of n nodes, m � n� 1.

Example: starn, one node in middle, n� 1 around it in circle, connected to center node. m � n� 1.

Proof: By induction on n. Wrong proof: n� 1 vertices, just add one more. But:

Lemma 5.3 (1) Every tree has a vertex of degree 1 (n ¥ 2) (�)

I.H.: true for n� 1 vertices, D.C. ”. Let x be a vertex of degree 1 in tree T with n vertices. Remove it: get
graph T 1, has n� 1 vertices, T has no cycles, T 1 is connected.

Lemma 5.4 (2) If G is connected, degpxq � 1, then Gzx is connected. (�)

Say a legal coloring is f : V Ñ tcolorsu such that p@x, y P V qpx � y ùñ fpxq � fpyqq. G is k-colorable if
D a legal coloring with ¤ k colors. The chromatic number χpGq :� mintk |G is k � colorableu. A graph is
bipartite ðñ 2-colorable. χpGq � 1 ðñ G � K̄n, χpKnq � n, Do χpGq � n ðñ G � Kn.

Theorem 5.5 (Kuratowski’s Theorem) G is planar ðñ G has no K5 or K3,3.

Definition: A clique is a complete subgraph. ωpGq is the size of the largest clique. χpGq ¥ ωpGq.
Definition: The independence number is αpGq and is the size of the largest independent set in a graph. A
set of vertices is a subset A � G such that no two vertices are adjacent. Also, αpGq � ωpḠq.
Definition: A plane graph is a plane drawing of a graph without any intersections.

Definition: A multigraph is a graph that also allows loops (self-edges) and parallel edges (multiple edges
between a pair of vertices).

Note that the handshake lemma remains valid (2m �
¸
degpnq).

Definition: Regions are connected components of the complement of the plane graph.

Theorem 5.6 (Dual handshake) number of sides of a region (r) = 2 * number of edges (m)

The dual plane graph is the set of connected points between regions, going over each of the edges. Note
that duals can introduce multigraphs even from a simple graph. Trees have one region. Their dual will be a
vertex with n� 1 loops (edges).

Theorem 5.7 (Euler’s Formula) For a connected plane graph, n�m� r � 2

Can prove by induction on n �m, but need to use the Jordan Curve Theorem, which is too advanced for
this class.

Count the number N of trees on n vertices, drawing pictures: Np2q � 1, Np3q � 3, Np4q � 16. Count
paths of length k in Kn:

npn� 1qpn� 2q � � � pn� k � 1q
2

Shows Np5q � 125. These all suggest one formula:
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Theorem 5.8 (Cayley’s Formula) The number of spanning trees of Kn is nn�2.

Proof: Bijective: Encode every spanning tree by a string of length n�2 over an alphabet of size n. “Pr̀‘ufer
code”: MN, Wiki.

Another proof: figure here, prescribe: vertex i has degree di ¥ 1, and
ņ

i�1

di � 2n � 2, by the handshake

theorem. Then

Theorem 5.9 Suppose d1, . . . , dn satisfy these conditions, then then the number of trees with these degrees
on vertex set rns � t1, . . . , nu is

pn� 2q!
n¹
i�1

pdi � 1q!

Proof: Proof: by induction.

Lemma 5.10 If d1, . . . , dn satisfy the constraints, then Di, di � 1.

Proof: Suppose false: @i, di ¥ 2 ùñ °
di � p2n� 2q ¥ 2n, ñð. Look at vertex n, then

Npd1, . . . , dnq �
n�1̧

i�1,di�1

Npd1, . . .loomoon
Ò

di�1

, dn�1q � pn� 3q!±pdi � 1q! p
n�1̧

i�1

pdi � 1qq � pn� 2qpn� 3q!±pq! � X

Then, proof of Cayley’s formula:

#sp. trees of Kn �
¹

di¥1,
°
di�2n�2

Npd1, . . . , dnq �
¸

di¥1,
°
di�2n�2

pn� 2q!±pdi � 1q! � p1� � � � � 1looooomooooon
n

qn�2 � nn�2,

last bit by the multinomial theorem. Note:
°pdi � 1q � ° di � n � p2n� 2q � n � n� 2.

Count n digit integers of which (1) all digits are odd, (2) all odd digits occur.

(1): 5n

(1)+(2): 5n � 5 � 4n � �52� � 3n � �53�2n � �54�1n
This is a special case of:

5.1 Inclusion-Exclusion

Universe Ω, subsets A1, . . . , Ak, given | XiPI Ai| for all I � rks, want to find |B|, where B � A1 Y . . .YAk.
|B| � S0 � S1 � s2 �� . . ., pi :� |Si|

|Ω| , uniform dist.
Answer (Inclusion-Exclusion formula):

S0 � |Ω|
S1 � |A1| � � � � � |Ak|
S2 � |A1 XA2| � |A1 XA2| � � � � � |Ak�1 XAk|

...
Sj �

¸
1¤i1 ��� ij¤k

|Ai1 X � � � XAij |

and number of terms in Sj is
�
k
j

�
.
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Example: |Ω| � 5n strings with digits 1, 2, 3, 4, 5, Ai set of those that miss ith digit, AiXAj . 5n� 5 � 4n��
5
2

� � 3n � �53� � 2n � �54� � 1n.

Proof: For any x (diagram), look at rpxq � #ti |x P Aiu � r and cpxq, the contribution of x to S0�S1�� � � .
Need to prove:

cpxq �
#

1 if x P B, i.e. rpxq � 0
0 if x R B, i.e. rpxq � 1

Now,

cpxq � 1� r �
�
r

2



�
�
r

3



� � � � � p1� 1qr � 0r �

#
1 if r � 0
0 if r ¥ 1

More general version (we only have over uniform distribution): over any probability distribution:

Theorem 5.11 If A1, . . . , Ak are events and pi is defined by (*), then P pBq � p0 � p1 � p2 � � . . . �¸
I�rks

p�1q|I|P p
£
iPI
Aiq.

where (*) is

p0 � P pΩq � 1

p1 �
¸
P pAiq

p2 �
¸
P pAi XAjq

...

(general).

�: Adapt previous proof

A,B events, IA indicator variable:

IApxq �
#

1 if x P A
0 if x R A

�:

IAYB � IAIB

IA � 1� IA
Now

p1� x1qp1� x2q � � � p1� xnq �
¸
I�rns

¹
iPI

xi

p1� x1qp1� x2q � � � p1� xnq �
¸
I�rns

p�1q|I|
¹

xi

Now,

B � A1 Y � � � YAk � A1 X � � � XAk,

IB �
¹

IAi �
k¹
i�1

p1� IAiq �
¸
I�rks

p�1q|I|
¹
iPI

IAi �
¸
I�rks

p�1q|I|IXiPIAi
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By linearity of expectation,

P pBq � EpIBq �
¸
I�rks

p�1q|I|EpIXiPIAi �
¸
I�rks

p�1q|I|P pXiPIAiq

Application 1: explicit formula for Euler’s φ function:

n �
n¹
i�1

pkii , φpnq � n
t¹
i�1

p1� 1
pi
q.

Proof: Ω � rns, Ai � Ω � set of numbers divisible by pi, B � YAi � tj : gcdpj, nq � 1u, φpnq � |B|.
|Ai| � n

pi
, P pAiq � 1

pi
, |Ai XAj | � n

pipj
, P pAi XAjq � 1

pipj
, uniform distribution, P pBq � |B|

n .,

P pBq �
¸

|I|�rts
p�1q|I|P pXiPIAiq �

¸
p�1q|I| 1¹

iPI
pi
�
¸
I�rts

p�1q|I|
¹
iPI

1
pi
�
¹
p1� 1

pi
qX

Application: “derangement problem”: probability that random permutation is a derangement � 1
e . In MN,

read “Hatcheck Lady & Co.”

Now, back to random variables.

Definition: X, Y random variables are independent if

p@x, y P RqpP pX � x, Y � yq � P pX � xqP pY � yqq
If EpXY q ¡ EpXqEpY q, X and Y are positively correlated, if EpXY q   EpXqEpY q they’re negatively
correlated, if equal then they’re uncorrelated.

Note that independence ùñ uncorrelated but not the other way around.

Corollary 5.12 If P py � yq � 0, then P pX � xq � P px � x |Y � yq.
�: If X, Y independent, then EpXY q � EpXqEpY q.
�: Events A, B independent ðñ IA, IB are independent.

Definition: Random variables X1, . . . , Xk independent (fully independent, mutually independent, collec-
tionwise independent) if

p@x1, . . . , xk P RqpP pp@iqpXi � xiqq �
k¹
i�1

P pXi � xiq

�: Events A1, . . . , Ak are independent ðñ IA1 , . . . , IAk independent.

Theorem 5.13 If X1, . . . , Xk are independent, then

Ep
k¹
i�1

Xiq �
k¹
i�1

EpXiq

�: If X,Y, Z,W, T are independent random variables, then X � Y , cospZ �W q, eT are independent.

�: If X � 1, . . . , Xk are independent random variables and rks � I1 Z � � � Z It partition and f1, . . . , ft are
functions and fi has |Ii| variables, then f1pXi : i P I1q, . . ., ftpXi : i P Itq are independent random variables.
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The covariance of X and Y is

CovpX,Y q � EpXY q � EpXqEpY q
X and Y are positively correlated if CovpX,Y q ¡ 0, negatively correlated if CovpX,Y q   0, uncorrelated if
CovpX,Y q � 0.

The variance,or second moment, is

VarpXq � ErpX �mq2s, m � EpXq
� ErX2 �m2 � 2Xms
� ErX2s � Erm2s � 2ErmXs
� ErX2s �m2

� ErX2s � pErXsq2

Have
Varp

¸
i

Xiq �
¸
i

VarpXiq � 2
¸
i j

CovpXi, Xjq.

For Xi a random variable, X � °Xi,

ErXs � Er
¸
i

Xis �
¸
i

ErXis.

Also,
Varp

¸
i

Xiq � Erp
¸
Xiq2s � pEr

¸
Xisq2

�: px1 � � � � � xnq2 �
¸
i

¸
j

xixj �
¸
i

x2
i � 2

¸
i j

xixj

Now,

Varp
¸
i

Xiq � Erp
¸
Xiq2s � pEr

¸
Xisq2

� Er
¸
i

X2
i � 2

¸
i j

XiXjs � p
¸
i

EpXiqq2

�
¸
i

EpX2
i q � 2

¸
i j

EpXiXjq � p
¸
i

EpXiq2 � 2
¸
i j

EpXiqEpXjqq

�
¸
i

pEpX2
i q � EpXiq2q � 2

¸
i j
pEpXi, Xjq � EpXiqEpXjqq

�
¸
i

VarpXiq � 2
¸
i j

CovpXi, Xjq

Varp°Xiq � °VarpXiq and standard deviation (SD) is σpxq �aVarpXq.
VarpXq � EpX2q � EpXq2 ¥ 0 ùñ EpX2q ¥ EpXq2

The last inequality is the Cauchy-Schwartz Inequality, perhaps in a different form than you’ve seen before.
Another representation of Cauchy-Schwartz:

p
¸
XiYiq2 ¤ p

¸
X2
i qp
¸
Y 2
i q

EpXY q2 ¤ EpX2qEpY 2q
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Setting a � Xi{
a
EpX2

i q, b � Yi{
a
EpY 2

i q,
a2 � b2 ¥ 2ab ùñ Epa2q � Epb2q ¥ 2Epabq

ùñ Ep X2
i

EpX2
i q
q � Ep Y 2

i

EpY 2
i q
q ¥ 2Ep XiYi

EpX2
i qEpY 2

i q
q

ùñ 1� 1 ¥ 2
EpXiYiqa
EpX2

i qY pY 2
i q

A Bernoulli trial means tossing a biased coin: H with prob. p, tails with prob 1� p. A k-Bernoulli trial is
a completely independent set of k Bernoulli trials, Xk � P rn� Bernoulli trial will have k headss.

P pXkq �
�
n

k



pkp1� pqn�k

Let Yi be the outcome of the ith Bernoulli trial (=1 if H, 0 if T). Define X � °Yi, get

ErXs � Er
¸
Yis �

¸
i

ErYis �
¸
i

p � np

VarrXs � Varr
¸
Yis �

¸
i

VarrYis �
¸
i

rErY 2
i s � ErYis2s � npp� p2q � npp1� pq

The weak law of large numbers says that for ε, p ¡ 0 fixed,

P r|Xn � np| ¡ εpnpqs ÑnÑ8 0

To prove, this need the Markov inequality : for η a random variable, non-negative,

P rη ¡ as ¤ Erηs
a

Proof:
Erηs �

¸
i

µiP pη � µiq ¥
¸
µi¡a

µiP pη � µiq ¡ a
¸
µi¡a

P pη � µiq � aP rη ¡ as

This is the first of the so-called concentration lemmas. Another is Chebyshev’s inequality:

P r|η �m| ¡ as ¤ Varpηq
a2

, m � Epηq
Proof:

P r|η �m| ¡ as � P rpn�mq2 ¡ a2s ¤ Erpη �mq2s
a2

� Varpηq
a2

C’s inequality proves the WLLN, because

ùñ P r|Xn � np| ¡ εnps ¤ npp1� pq
ε2n2p2

� p1� pq
ε2pn

Ñ 0

as nÑ8. Now, some problems.
A random graph on n vertices: for each pvi, vjq toss an unbiased coin to decide whether the edge is in

the graph. Then want to show that

P rAll vertices in the graph has degree close to
n

2
s ÑnÑ8 1

The expected number of neighbors of a vertex is pn� 1q{2.

P r@σ P V, |Npvq � n� 1
2
| ¤ εpn� 1q

2
s Ñ 1

P rDv P V, |Npvq � n� 1
2
| ¡ εpn� 1q

2
s Ñ 0
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Yσ is probability that for vertex v, |Npvq � n�1
2 | ¡ εpn�1q

2 , want P r�v Yvs Ñ 0. The union bound is

P r
¤
v

Yvs ¤
¸
v

P rYvs Ó 0

(Npvq is the degree of vertex v) Now

P rYσs � P r|Npvq � n� 1
2
| ¥ εpn� 1q

2
s

¤ VarpYσq
p εpn�1q

2 q2 �
n

4ε2 n2

4

� 1
ε2n

� Op 1
n
q

So here, Chebyshev isn’t enough. Need Chernoff bound : let ηi be 1 with prob. 1
2 , �1 with prob. 1

2 ,
Erηis � 0. Then

P r
ņ

i�1

ηi ¡ as ¤ expp� a
2

2n
q

We can adapt this slightly for our purposes, take ηi =1 w.p 1
2 , = 0 otherwise,

P r|
ņ

i�1

ηi � n

2
| ¡ εn

2
s ¤ expp�pε

2n2

2n
qq � expp�Opnqq

5.2 Random graph

With high probability,5 when the last vertex is reached by an edge, the graph is connected. There’s a whole
theory of random graphs. Whole subject stems from one original paper: Erdös & Rényi 1960, “Evolution of
random graphs.” Choosing m edges at random, |Ω| � �pn2qm �. Note that if know one edge there, any other edge
less likely to occur, so they’re negatively correlated. In another model, edges are thrown in independently
with probability p, then m � �n2�p � Ep# edgesq. The first model is referred to as Gn,m model, second is
Gn,p model, much more studied.

Most frequently studied in an introduction to random graphs is Gn, 12 .

Definition: The diameter of G is diampGq � maxx,yPV distpx, yq. The distance between x, y P V is
distpx, yq � min lengthpx� y pathq.

For example, diampKnq � 1, longest path is Kn � n� 1.

Theorem 5.14 Almost all graphs have diameter 2, meaning if pn � P pdiampGn, 12 q � 2q, then lim
nÑ8 pn � 1

In fact, diam � 2 is exponentially unlikely: 1� pn   Cn for some constant 0   C   1, find   0.76n X.

�: @p ¡ 0 constant, P pdiampGn,pq � 2q Ñ 1.

Let

gn :� P pdiampGn, 12 q ¥ 3looooooooomooooooooon
An

q

rn :� P ppDx � y P V qppEzqpx � z � yqqlooooooooooooooooooomooooooooooooooooooon
Bn

q

An ùñ Bn because if diam ¥ 3 then Dx, y such that distpx, yq ¥ 3.
5Also written “w.h.p.” Means in some limit, the probability of an event A occurring is one, which is different from event A

always occurring. When a coin is flipped n times, the probability a head comes up at least once is small but finite. As n Ñ8,
P pat least one Hq � 1, even though the infinite sequence TTTT. . . could occur.
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Claim: rn Ñ 0 at an exponential rate.

Proof: For x � y P V , Apx, yq � “x, y have no common neighbor”� �z�x,y “z is not a common neighbor”,
which are n � 2 independent events. To see this, fix x, y, z, P px � z, y � zq � 1

4 , z is a common neighbor,
so P pz is not a common neighbor of x, yq � 3

4 , and

P pApx, yqq � p3
4
qn�2

P ppDx � yqlooomooon
pn2qchoices

Apx, yqq � P p
pn2qApx,yq¤
x�y

 loomoon
unionbd

�
n

2



p3
4
qn�2   p3

4
� εqn

for n ¥ n0, @ε ¡ 0Dn0., where last   is œ.

5.3 Digraphs

Directed graphs. A digraph is a relation on V , E � V � V . We can use graphs as digraphs by replacing an
edge with ñ

ó.
A directed walk is v0 Ñ v1 Ñ . . . Ñ vk of length k, a directed path has no repeated vertices, a cycle has

v0 � vk. y is accessible from x if DxÑ � � � y path (means directed path). Say “y is accessible from x”, k � 0.

�: Accessibility is a transitive relation.

Definition: x, y are mutually accessible if x is accessible from y and vice versa.

�: This is an equivalence relation.

Definition: The strong components are equivalence classes.

�: The strong components form a poset under accessibility.

Have sources and sinks, nice figures here.

Definition: Weakly connected means “connected” if we ignore orientation.6

The adjacency matrix of G � pV,Eq is a p0, 1qmatrix, V � rns, A � paijq,

aij �
#

1 if iÑ j

0 otherwise

The transpose of this is B � AT , bij � aji. Greverse corresponds to adjacent matrix AT .

Definition: A symmetric matrix is A � AT ( ðñ undirected, loops permitted).

A DAG is a “directed acyclic graph” (no cycles) .

�: Prove G is a DAG ðñ has a topological sort.

Now, A is k � l, B is l � n, C � AB � pcijq,

cij �
ļ

t�1

aitbtj

For A an adjacency matrix of G � pV,Eq, A2 � pbijq, n� n, bij �
ņ

t�1

aitatj , so bij �# 2-step iÑ j walks.

6“Connected for pedestrians, not for automobiles. Or bikes. I like riding my bike the wrong way.. at least I know who is
hitting me.”
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�: Ak � pcijq, cij � # of k-step walks iÑ � � � Ñ j.

A discrete stochastic process is a set of states B and transitions between states. A finite Markov chain is
a finite set of states and fixed transition probabilities, V � rns, pij � P pXt�1 � j |Xt � iq, Xt is location
of particle at time t. Let T � ppijq be the transition matrix of a finite Markov chain, then T 2 � pgijq,
gij �

ņ

l�1

pilplj .

�: pilplj � P pXt�1 � l and Xt�2 � j |Xt � iq
So, � P pXt�2 � j |Xt � iq, 2-step transition probabilities

�: T k � pppkqij q, ppkqij � P pXt�k � j |Xt � iq, k-step transition probabilities

If T k � uniform � 1
nJ , J is matrix with all 1’s.

Observation: Every row of T is ¥ 0 and sums to 1:
ņ

j�1

pij � 1.

Definition: T is a stochastic matrix if tij ¥ 0 and
ņ

i�1

tij � 1.

Have a digraph associated with T : aij � 1 ðñ pij ¡ 0. One interesting question is whether it’s strongly
connected.

5.4 Matrix theory and applications to digraphs and finite Markov chains

Entries of Ak count k-step walks iÑ � � � Ñ j. T is a stochastic matrix if pij ¥ 0,
ņ

j�1

pij � 1, the row sums.

The adjacency matrix has entries

aij �
#

1 iÑ j

0 otherwise

The transition matrix T � ppijq,
pij � P pXt�1 � j |Xt � iq

The entries of Tk � pppkqij q are the k-step transition probabilities.

Definition: For A an n�n matrix with real or complex entries, λ P R or C, x P Rn or Cn, x � rx1 � � �xnsT .
x is a right eigenvector of A to eigenvalue λ if x � 0 � r0 � � � 0sT and Ax � λx. For y � ry1 � � � ynsT ,
yT � λy, yT is a left eigenvector. λ is a right eigenvalue of A if D corresponding right eigenvectors.

Theorem 5.15 Right ðñ left eigenvalues.

F is the “field of scalars”, F � R or C.

Definition: The vectors x1 � rx11 � � �x1nsT , . . . ,xk � rxk1 � � �xknsT are linearly independent if only their
trivial linear combination is zero, where

λ1x1 � � � � � λkxk � 0

is a linear combination, xij P F , λi P F , λ1 � � � � � λk � 0 is the trivial linear combination.

Definition: rank(x1, . . . ,xk) = maximum number of linearly independent vectors among the xi.
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Comments: If pDiqpxi � 0q then x1, . . . ,xk are not linearly independent,

0x1 � � � � � 1xi � � � �0 xn � 0.

If pDi � jqpxi � xjq, then
� � �loomoon
0

�1xi � � � �loomoon
0

�p�1qxj � � � �loomoon
0

� 0

�: In Rn find n� 1 vectors such that every n of them are linearly independent

For A a k�l matrix over F , the column rank of A is rank(a1, . . . ,alq and the row rank of A is rank(r1, . . . , rkq,
where ai is the ith column of A, ri is the ith row of A. By definition, rowrankpAq=colrankpAq. But:

Miracle # 1 (of linear algebra): If S � Fn, then every maximal (=nothing can be added to
preserve linear independence) linearly independent subset of S is maximum (=largest).
Miracle # 2: colrank=rowrank, i.e. colrankpAq=colrankpAT q.

Definition: For S a set of vectors, span(S)=set of all linear combinations of S.

Obs: @S � Fn, 0 P SpanpSq even if S � H.

Definition: U � Fn is a subspace if p0 P Uq and U is closed under linear combinations.

�: Span(S) is always a subspace.

Definition: If U � Fn, dimpUq � rankpUq.
If dimU � d then Dd linearly independent vectors in U and no more.

For b1, . . . , bd,

Claim: Spanpb1, . . . , bdq � U

Proof: Let x P U . NTS: x P Spanpb1, . . . , bdq, i.e., Dλ1, . . . , λd P F such that x � λ1b1 � � � � � λdbd.
We know that b1, . . . , bd,x are linearly dependent, i.e. Dα1, . . . , αd, αd�1, not all zero, such that

ḑ

i�1

αibi�
αd�1x � 0.

Claim: αd�1 � 0 because b1, . . . , bd are linearly independent, so
°p� αi

αd�1
qbi � xX

Definition: A basis of a set of vectors S is a linearly independent set of vectors in S which spans S, i.e.
S � Span(those vectors)

Example: Column-basis of a matrix A.

Theorem 5.16 Every maximal linearly independent subset of S is a basis of S

Proof: �

Theorem 5.17 a1, . . . ,ak P U (subspace) is a basis of U if and only if every x P U can be written as a
unique linear combination of a1, . . . ,ak.

Obs: If a1, . . . ,ak are linearly independent and
°
αiai � °βiai ùñ p@iqpαi � βiq

Proof:
°pαi � βiqai � 0

Obs: Conversely, if a1, . . . ,ak are linearly dependent, then every vector in Spanpa1, . . . ,akq can be written
as a linear combination in more than one way.
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Proof: 0 � 0a1�� � ��0ak � λ1a1�� � ��λiak with not all λi � 0. Suppose now x � °αiai � °pαi�λiqai.
The standard basis of Fn is e1, . . . , en (defined as usual, I’m not writing out). This is a basis because¸

αiei � rα1 � � �αnsT P Fn,
and this decomposition is unique.

Corollary 5.18 dimFn � n

�: If a1, . . . ,ak P S are linearly independent, then this can be extended to a basis.

Definition: a1, . . . ,am generate U if U � Spanpa1, . . . ,anq.

�: If a1, . . . ,an generate U , then D a subset of them that is a basis.

Matrix notation: say Ax � b for A a k � l matrix, x P F l, b P F k, denotes a system of linear equations

a11x1 � � � � � a1lxl � b1
...

ak1x1 � � � � ,�aklxl � bk

A � ra1, . . . ,als, aj the jth column of A, Ax � x1a1� � � � �xlal (�). So in the system of linear equations
Ax � b, we are looking to express b as a linear combination of the columns of A.

x1a1 � � � � � xlal � b, xi unknown,

Corollary 5.19 Ax � b solvable ðñ b P Spanpa1, . . . ,akq ðñ rankpAq � rankpA | bq
The method to solve a system of linear equations = method to find rank: this is Gaussian elimination,
READ anywhere, not going to do here.

A homogeneous system of linear equations is Ax � 0. x � 0 is always a solution (trivial solution). A
nontrivial solution exists ðñ a1, . . . ,al are linearly dependent,

°
xiai � 0.

Corollary 5.20 For a k � l matrix A, the following are equivalent:

1. Ax � 0 has no nontrivial solutions.
2. The columns of A are linearly independent.
3. rankpAq � l

4. The rows of A span F l

5. A has a left inverse, i.e. DB, l � k such that BA � Il, the l � l identity matrix

�: Review the proof of the equivalence of (1)-(4)

�: Show (5)

�: rankpA �Bq ¤ mintrankpAq, rankpBqu

�: Find A, B with rank¿0 such that A�B � 0 (and A,B � 0).

�: Find A � 0 such that A2 � 0

A If F � R, then rankpATAq � rankpAq.
Theorem 5.21 For an n� n matrix A over F , the following are equivalent:

28



1. Ax � 0 has no nontrivial solution.
2. @b P Fn pDxqpAx � bq
3. p@b P FnqpD!xqpAx � bq
4. Columns of A are linearly independent.
5. Rows ”
6. Columns span Fn

7. Rows span Fn.
8. A has a left inverse
9. A has a right inverse

10. A has a 2-sided inverse
11. detpAq � 0

Name derives from fact that it “determines” whether or not the set of linear equations has a nontrivial
solution.

Definition: A is nonsingular if detpAq � 0

�: Equivalence of all but the last property (det) in the previous theorem.

Definition:

det

�
a b
c d



� ad� bc

Note: If A n�n then detA is a sum of n! terms, half +, half -. The eigenvalue equation is Ax � λx, x � 0,
Ax � λIx, I � In. So λis an eigenvalue ðñ Dx � 0 such that pλI �Aqx � 0 ðñ λI �A singular.

Theorem 5.22 λ is an eigenvalue ðñ detpλI �Aq � 0.

Fact: detpAq � detpAT q Example: A as above, eventually get

detpλI �Aq � λ2 � pa� dqλ� pad� bcq,
a quadratic equation in λ, say fAptq � detptI � Aq, this is a polynomial of degree n, the characteristic
polynomial of A.

Corollary 5.23 λ is an eigenvalue of A ðñ fApλq � 0, i.e. λ is a root of the characteristic polynomial.

Corollary 5.24 Left ðñ right eigenvalues the same, because fAptq � fAT ptq.
�: A is stochastic ðñ aij ¥ 0 and 1 is an eigenvalue with right eigenvector r1 � � � 1sT .

A group pG, �q, pG,�q has p@a, b P Gq, � : G�GÑ G, pa, bq ÞÑ ab

1. pD!c P Gqp“ab � c”qp“a� b � c”q
2. associative: pabqc � apbcq, pa� bq � c � a� pb� cq.
3. identity: pDeqp@aqpae � ea � aq, e is the identity
4. inverse: p@aqpDbqpab � ba � eq, b � a�1, p@aqpDbqpa� b � b� a � 0q, b � p�aq.
5. commutativity: ab � ba, a� b � b� a, if true this is an abelian group

Some groups are pZ,�q, pR,�q, R� � Rzt0u, pR�, �q. For Zn=residue classes mod n, pZn,�q is a group,
pZn, �q isn’t, define Zn � reduced residue classes mod n = residue classes that are relatively prime to n,
|Z�n | � φpnq,
�: pZ�n , �q is a group.
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GLnpRq is the group of n � n nonsingular real matrices, det � 0, means D inverse, full rank. Can have
time for GLnpFq, where F is any field. The identity element is I, the n� n identity matrix.

�: Give simplest proof that if A,B nonsingular, then AB is nonsingular.

The symmetric group of degree n is all permutations of rns, Sn, where a permutation is a bijection

f : rns Ñ rns pbijectionq, a ÞÑ af

@a, aid � a, |Sn| � n!.

Example:

f :
�

1 2 3 4 5
4 2 5 3 1



ùñ f�1 :

�
4 2 5 3 1
1 2 3 4 5




f :
�

3 4 1 5 2
5 3 4 1 2



ùñ f�1 :

�
1 2 3 4 5
5 2 4 1 3




Composition of permutations:

f :
�

1 2 3 4 5
4 2 5 3 1



, g :

�
1 2 3 4 5
4 3 5 1 2



�
�

4 2 5 3 1
1 3 2 5 4



ùñ fg :

�
1 2 3 4 5
1 3 2 5 4




f has 3 inversions, g has 5, fg has 2 (check... not sure I got it right). Let Invpgq be # inversions of g, and

Invpfgq � Invpfq � Invpgq mod 2

t �
�

1 2 3 � � �n
2 1 3 � � �n




Invptq � 1. So for p@fqpInvpftq � Invpfq � 1 mod 2q, |S1| � 1.

Definition: f is an even permutation if Invpfq � 0 mod 2, an odd permutation if Invpfq � 0 mod 2.

Corollary 5.25 # even permutations = # odd permutations (assuming n ¥ 2)

This is because f ÞÑ f � t is a bijection between even and odd permutations. A transposition switches two
elements,

tij �
�

1 2 � � � i � � � j � � �n
1 2 � � � j � � � i � � �n




Invptijq � 2pj � iq � 1 � 1 (mod 2), so all transpositions are odd.

�: Transpositions generate Sn.7

Theorem 5.26 A permutation f is even ðñ f is the product of an even number of transpositions.

Cycle notation: pictures of 1Ñ4Ñ3 Ñ 5, 2 Ñ self, f is a 4-cycle (don’t count identity), g is 1 Ñ 4 Ñ 1,
2 Ñ 3 Ñ 5

Definition: A k-cycle is i1 ÞÑ c2 ÞÑ � � � ÞÑ ik ÞÑ i1, everything else fixed.

Notation: pi1 i2 . . . ilq, so f � p1435q � p4351q, g � p14qp235q � p235qp14q, this is cycle notation

Theorem 5.27 Every permutation is a product of disjoint cycles, unique up to the order of the factors.
7Says written on an open-shelf math library in Germany: “Dear patrons: please remember that transpositions generate Sn.”
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Transpositions pabq are odd, p123q � p12qp13q is even, p1234q � p12qp13qp14q, etc., gives

Theorem 5.28 A k-cycle is even ðñ k is odd.

Sign of permutation is sgnpfq � p�1qInvpfq= 1 if f is even, �1 if f is odd.

�: sgnpfgq � sgnpfq � sgnpgq
Definition: For A an n� n matrix,

detpAq �
¸
fPSn

sgnpfq �± ai,if
n!

(in definition, the product is the expansion term.)

Theorem 5.29 Let A � ra1, . . . ,ans, elementary operation is ai ÞÑ λaj, j � i, λ a scalar, detpA1q �
detpAq.
(There’s a whole example here using λ..)

Proof:

detra1, � � �ai�λaj � � �aj � � �ans � detA�detra, � � � r�λajsloomoon
i

aj � � �ans � p�λq detra1, � � � ,aj ,aj , . . . ,ans � 0

A � ra1,a2, . . . ,ans pa1 � b� cq
B � rb,a2, . . . ,ans
C � rc,a2, . . . ,ans
D � rλa1,a2, . . . ,ans

detpDq � λ detA. Warning: A � B � C, D � λA.
If a1 � 0 then detA � 0, if Di � j such that ai � aj then detA � 0

Theorem 5.30 If two columns of A are equal then detA � 0

Proof: We can match up the expansion terms into pairs that cancel.

Corollary 5.31 detA doesn’t change if we subtract any linear combination of columns other than ai from
ai.

Corollary 5.32 If rankA   n then detA � 0

Proof: rankA   n ðñ columns linearly dependent ùñ pDiqpai P Spanpa1, . . . ,ai�1,ai�1, . . . ,anq,
subtract ùñ get 0 column ùñ det � 0

This means Gaussian elimination “works.”8 Can look up what Gaussian elimination is online. Another
important fact:

Theorem 5.33 If we switch columns AÑ A1, detA1 � �detA.

More generally, if we apply f P Sn to the columns of A, A ÞÑ Af , detpAf q � sgnpfq detA.

�: Elementary operations don’t change the rank of A.
8“The goal is to tame the determinant, this horrible expression, by making as many zeros as possible.”
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Corollary 5.34 detA � 0 ðñ rankpAq   n.

Theorem 5.35 (Fundamental Theorem of Algebra) If fpxq is a polynomial over C and degpfq ¥ 1
then pDα P Cqpfpαq � 0q, 6 if f has degree n then fpxq � anpx� α1q � � � px� αnq
Also (new theorem), if fpxq � a0 � a1x � � � � � anx

n, deg f � n if an � 0 then fpxq � px � αqgpxq, g a
polynomial, i.e. x� α | fpxq. (�)

degp0q � 8, where 0 is seen as a polynomial (def of polynomial is that a0 � 0.) Also,

1. degpfgq � degpfq � degpgq
2. degpf � gq ¤ maxtdegpfq,degpgqu
3. if degpfq � degpgq, then � same.

For fpxq � xn � 1 �
n�1¹
i�0

px� ωiq, where ω0, ω1, . . . , ωn the nth roots of unity,

ωj � cosp2πj
n
q � i sinp2πj

n
q

The order of ωj is the smallest k ¥ 1 such that ωkj � 1, e.g. the order of ω1 is n.

Definition: ωj is a primitive nth root of unity if its order is n.

�: Prove: ωj is a primitive nth root of unity ðñ gcdpj, nq � 1.

Corollary 5.36 # primitive nth roots of unity is φpnq.

�: Suppose ω is an nth root of unity, ωn � 1, then if k � order of ω then k|n ùñ ω is a positive kth root
of unity.

Conversely, if k|n, then every kth root of unity is also an nth root of unity:

zk � 1 ùñ zn � pzkqnk � 1
n
k � 1

Let Un � t set of primitive nth roots of unityu, Vn � tall nth roots of unityu.

Vn � Zd|nUd, n � |Vn| �
¸
d|n

|Ud|loomoon
φpdq

n �
¸
d|n

φpdq, xn � 1 �
¹
d|n

Φdpxq. xn � 1 �
¹

ωpx� ωq, where ω is an nth root of unity,

Φnpxq �
¹
ω

px� ωq
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ω the same, degpΦnq � φpnq, the nth cyclotomic polynomial

Φ1pxq � x� 1
Φ2pxq � x� 1

Φ3pxq � px� 1
2
� i
?

3
2
qpx� 1

2
� i
?

3
2
q � x2 � x� 1

Φ4pxq � px� iqpx� iq � x2 � 1

Φ5pxq � x5 � 1
x� 1

� x4 � x3 � x2 � x� 1

ùñ px� 1qΦ5pxq � x5 � 1

x6 � 1 �
¹
i

� 16Φipxq � x2 � x� 1

Φ6pxq � x2 � x� 1

Φ7pxq � x7 � 1
x� 1

� x6 � � � � � x� 1

Φ8pxq � x8 � 1
x4 � 1

� x4 � 1

(There’s some algebra in there didn’t write down.) Erdös found that the coefficients here get very large.

�: All cyclotomic polynomials have integer coefficients.

n � n matrix A, if x is a vector x � 0 and Dλ scalar such that Ax � λx then we call x an eigenvector
to eigenvalue λ.

λ is an eigenvalue if Dx � 0 such that Ax � λx.

Ax � λx � λIx ùñ λIx�Ax � 0 ùñ pλI � aqx � 0

λ an eigenvalue ðñ Dx � 0: pλI �Aqx � 0 ðñ λI �A is singular ðñ detpλ�Aq � 0.
An n� n matrix fAptq � detptI �Aq � polynomial of degree n. Sketches the matrix out, get

det � tn � p
¸
aiiqloomoon

tracepAq

tn�1 � � � � � p�1qn detA

Corollary 5.37 λ is an eigenvalue of A ðñ fApλq � 0, λ is a root of the characteristic polynomial.

Something coordinate related: �
i1

j1



�
�

cos θ � sin θ
sin θ cos θ


�
i

j



Say Rθ � this matrix, the rotation matrix. Then Rα�β � Rα �Rβ , shows�

cosα � sinα
sinα cosα


�
cosβ � sinβ
sinβ cosβ



�
�

cospα� βq � sinpα� βq
sinpα� βq cospα� βq




�: x � �x1
x2

�
and x1 � Rθx then θ is the angle between x and x1.

So

fRαptq �
����t� cosα sinα
� sinα t� cosα

���� � pt� cosαq2 � psinαq2 � t2 � 2 cosαt� 1

eventually get λ1,2 � cosα� i sinα.
Recall that a digraph is strongly connected if h � period � gcd of lengths of all closed walks.
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�: Periodpxq � gcd of all closed walks starting at x. IfG is strongly connected ùñ p@x P V qpperiodpxq is the sameq

�: Period is multiple of k ðñ graph can be divided into k clusters around a circle such that all edges go
from one cluster to the next.

Digraph associated with an n� n matrix: iÑ j ðñ aij � 0.
Q: For a stochastic matrix A, when does An converge?
Assume G is the digraph associated with A, G strongly connected, such A is called irreducible.

Theorem 5.38 An converges ðñ G is aperiodic.

means period=1 corollary to Frobenius-Perron theorem.
Stationary distribution. Say xt�1 � xtT ,

xt � x0T
t,

evolution of the Markov Chain. The stationary distribution is x such that xT � x, the left eigenvector to
eigenvalue. (note that vT � r1 � � � 1s is a right eigenvector). If have a strongly-connected Markov chain, then
D a unique stationary distribution.

Theorem 5.39 1. For all finite Markov chains, D a stationary distribution.
2. If the corresponding graph is strongly connected (=Markov chain irreducible), then the stationary dis-

tribution is unique.

A regular graph of degree d has p@xqpdegpxq � dq. For A the adjacency matrix,

aij �
#

1 if i � j

0 otherwise

The transition matrix is then T � 1
dA � ppijq, T t � ppptqij q. The largest eigenvalue is λ1 � d, then

λi :� max2¤i¤n |λi| ¤ d.

Theorem 5.40 |pptqij � 1
n | ¤ pλd qt

(n � |V | as always.) So the convergence rate is governed by the eigenvalue gap, and this is a basic principle.
For A, B n� n matrices,

Theorem 5.41 detpABq � detpAq detpBq
this can be looked up in “the resources.”

�: detpA�1q � 1
detpAq

Definition: A, B are similar, A � B, if D S, S�1 such that B � S�1AS.

This is an equivalence relation (�). If A � B then detpAq � detpBq (�) (Hint: use detpABq formula).

�: fApxq � detpxI �Aq the characteristic polynomial, If A � B then fApxq � fBpxq.

fDpxq � det

�
��
x� λ1 � � � 0

. . .
0 x� λn

�
��¹px� λiq
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Example: A � �1 1
0 1

�
is not diagonalizable. Proof by contradiction: assume D S, S�1, then

fApxq � detpxI �Aq � px� 1q2

So if A is diagonalizable, then A � I, S�1AS � I, A � SIS�1 � I, ÑÐ.

�: (*) Prove: if all roots of fA are distinct, then A is diagonalizable.

Definition: An eigenbasis for A is a basis of Fn consisting of eigenvectors of A, i.e. n linearly independent
eigenvectors.

Theorem 5.42 A is diagonalizable ðñ D an eigenbasis.

Proof: A is diagonalizable ðñ D S, S�1:

S�1AS � D �

�
��
λ1 0

. . .
0 λn

�
�

ðñ AS � SD � rs1 . . . snsD � rλ1s1, . . . , λnsns ðñ all si are eigenvalues ðñ eigenbasis. (S �
rs1, . . . , sns, columns linearly independent.)

The standard inner product on Rn is

x � y :� xTy �
ņ

i�1

xiyi,

with the dot product defined as usual. Define the norm (length) of x to be ||x|| � ?xTx �a°x2
i .

�: Cauchy-Schwarz: |xTy| ¤ ||x|| � ||y||. Prove this based on VarpXq ¥ 0, EpX2q ¥ EpXq2
We say x and y are orthogonal if xTy � 0, and a set of vectors is orthogonal if they are pairwise

orthogonal.

�: If v1, . . . ,vk are nonzero, orthogonal vectors, then they are linearly independent.

A basis v1, . . . ,vn is orthonormal if it is orthogonal and ||vi|| � 1.

�: Any orthonormal set of vectors can be completed to an orthonormal basis.

An n � n real matrix A is orthogonal if ATA � I. (From now on, assume every matrix is n � n and real.)
For A � ra1, . . . ,ans,

aTi aj �
#

1 if i � j

0 if i � j
ðñ a1, . . . ,an ONB

Now if ATA � I then DA�1 � AT then AAT � I ùñ AT orthogonal ùñ rows of A are ONB.

Theorem 5.43 If A is orthogonal then pAxqT pAyq � xTy.

(Orthogonal matrices correspond to “congruences” of Rn.)

Proof: �:

pABqT � BTAT

pAxqT � xTAT

pAxqT pAyq � xTATAy � xT Iy � xT y
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Define the spectral norm of A as

||A|| � max
xPRn,x�0

||Ax||
||x||

�: D max

Note that if λ is an eigenvalue then ||A|| ¥ |λ|.
Proof:

Ax � λx, ||Ax|| � ||λx|| � |λ|||x||
last equality is �, then

||A|| ¥ ||Ax||
||x|| � |λ|X

�: (*) This is true if λ P C.

Then states spectral theorem.
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