
CMSC-27410/37200 Honors Combinatorics
FINAL EXAM March 12, 2012

Instructor: László Babai Ryerson 164 e-mail: laci@cs

This exam contributes 38% to your course grade. Recall that the midterm con-
tributes 20%, homework 38%, and class participation 4%. Take this problem
sheet home as a souvenir.

Do not use book, notes. Show all your work. If you are not sure of the
meaning of a problem, or you are not sure whether or not you can use a result
without proof, ask the instructor. The bonus problems are underrated, do
not work on them until you are done with everything else.

1. (12+8+15 points)

(a) Define the Shannon capacity Θ(G) of a graph G as the limit of
certain sequence associated with G. Define the graph-product
concept involved in the definition.

(b) Recall Fekete’s Lemma: If the sequence {ak} of positive numbers

satisfies ar+s ≥ aras for all r, s ≥ 1 then limn→∞ a
1/n
n exists. -

Use Fekete’s Lemma to show that the limit in part (a) exists.

(c) Prove: if G is self-complementary (isomorphic to its complement)
then Θ(G) ≥

√
n, where n is the number of vertices of G.

2. (5+5+8+12 points)

(a) Define the quantity ν∗ (fractional matching number) for a hyper-
graph.

(b) Let H = (P,L, I) be a projective plane of order k. (Recall: every
line has k + 1 points.) View H as a hypergraph. (The points are
the vertices, the lines correspond to the edges.) Calculate (b1)
ν(H), (b2) ν∗(H). (b3) Prove: τ(H) = k + 1.

3. (20+15 points) In a (±1)-matrix, every entry is 1 or −1. Recall: an
Hadamard matrix is an n × n (±1)-matrix of which the rows are or-
thogonal with respect to the standard dot product.

(a) Prove Lindsay’s inequality: if T is a k × ` submatrix of an n× n
Hadamard matrix and S is the sum of the entries of T then
|S| ≤

√
k`n.

(b) Prove that in the Gale-Berlekamp switching game on an n × n
board, Player I can ensure that the payoff will not be greater than
O(n3/2).

In this game, Player I chooses an n×n (±1)-matrix A and Player
II selects a set of rows and a set of columns and switches the signs
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of each selected row and then switches the signs of each selected
column. The payoff is the sum of all entries of the resulting matrix
B. You may use without proof the fact that for every k ≥ 1 there
exists an Hadamard matrix of size 2k × 2k. However, n is not
necessarily a power of 2 (but you get partial credit if you solve the
case when it is).

4. (12 points) Determine the fractional covering number τ ∗ of Pn, the path
of length n − 1. (Pn has n vertices and n − 1 edges. Make sure you
don’t confuse n and n− 1.)

5. (15+10 points)

(a) Let τ be the covering number and χ the chromatic number of the
graph G. Prove: χ ≤ τ + 1.

(b) Prove: for every positive integer k there exists a graph such that
τ = k and χ = k + 1.

6. (15+18 points)

(a) Prove the Kővári - Sós - Turán Theorem: If a graph G has no
4-cycle then m = O(n3/2). (As usual, n denotes the number of
vertices and m the number of edges.)

(b) Prove: If a graph has no 4-cycle then its chromatic number is
O(
√
n).

7. (15 points) Cayley’s formula says that the number of trees on a given
set of n vertices is nn−2. Use Cayley’s formula to prove that for all
sufficiently large n, there are more than 2.7n non-isomorphic trees with
n vertices.

8. (90 points) (Erdős) Prove: there exists a positive constant α such that
for all sufficiently large n there exists a triangle-free graph G with n
vertices and chromatic number > nα. Give your best lower bound for
α.

9. (15+8+7 points) (Quadratic character) Let p be an odd prime number.
Recall the following definitions. We say that a ≡ b (mod m) if m | a−b
(m divides a − b). An integer a is a quadratic residue mod p if a 6≡ 0
(mod p) and there exists an integer x such that a ≡ x2 (mod p); and a
is a quadratic nonresidue mod p if a 6≡ x2 (mod p) for any x. The mod-
p quadratic character χ2 is defined on integers a by setting χ2(a) = 0 if
a ≡ 0 (mod p); and if a 6≡ 0 (mod p) then χ2(a) = 1 if a is a quadratic
residue mod p and χ2(a) = −1 if a is a quadratic non-residue mod p.

(a) Prove that χ2 is multiplicative: for any pair (a, b) of integers,
χ2(ab) = χ2(a)χ2(b). Use only basic facts about prime numbers;
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do not use the existence of a primitive root mod p. Hint: count
the quadratic residues among the numbers {1, 2, . . . , p− 1}.

(b) Use Fermat’s little Theorem to prove that if p ≡ −1 (mod 4) then
−1 is a quadratic nonresidue mod p. (Fermat’s little Theorem
asserts that for any prime p and any integer a 6≡ 0 (mod p) we
have ap−1 ≡ 1 (mod p).)

(c) Recall that for a prime p ≡ −1 (mod 4), the Paley tournament
P (p) is defined as follows: the vertices of P (p) are the integers
{0, 1, . . . , p − 1}; we draw an i → j arrow if i − j is a quadratic
residue mod p. Prove: this rule indeed defines a tournament.

10. (75 points) (R. L. Graham and J. H. Spencer: explicit k-paradoxical
tournaments) Prove that there exists a constant c such that for all
primes p ≡ −1 (mod 4) satisfying p > ck24k, the Paley tournament
P (p) is k-paradoxical, i. e., every set of k players is beaten by some
player.

Use Weil’s character-sum estimate. Let f be a polynomial of degree
d ≥ 1 with integer coefficients whose lead coefficient is not divisible by
p and assume f 6≡ ag2 (mod p) for any constant a and any polynomial
g with integer coefficients. Then Weil’s character-sum estimate asserts,
for the case of the quadratic character mod p, that∣∣∣∣∣

p−1∑
x=0

χ2(f(x))

∣∣∣∣∣ ≤ (d− 1)
√
p.

11. (BONUS: 4+10+3+3 bonus points) Let G be a graph with n vertices,
m edges, and t triangles. Let λ denote the largest eigenvalue of the
adjacency matrix of G.

(a) Prove: λ ≤
√

2m.

(b) Prove: t = O(m3/2). (Do not use (c).)

(c) Prove: t ≤ cm3/2 where c =
√

2/3. (If you solve this, you also get
the credit for (b).)

(d) Prove: the constant c =
√

2/3 is best possible.

12. (BONUS: 20 bonus points) Prove: If the graph G contains no 5-cycle
then its chromatic number isO(

√
n) (where n is the number of vertices).

Total 380 points + 40 bonus points
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