CMSC-27410/37200 Honors Combinatorics
 MIDTERM EXAM February 24, 2012

Instructor: László Babai Ryerson 164 e-mail: laci@cs
This exam contributes 20% to your course grade.
Do not use book, notes. Show all your work. If you are not sure of the meaning of a problem, ask the instructor. The bonus problems are underrated, do not work on them until you are done with everything else.

1. (22 points) Prove: the chromatic number of a triangle-free graph is $O(\sqrt{n})$ where n is the number of vertices.
2. (18 points) Let $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$ denote the eigenvalues of the adjacency matrix of the graph G. Prove: $\sum_{i=1}^{n} \lambda_{i}^{2}=2 m$ where m denotes the number of edges.
3. (21 points) Prove: for almost all graphs G, we have $\chi(G)>(\omega(G))^{100}$, where $\omega(G)$ denotes the clique number (size of largest complete subgraph) and $\chi(G)$ denotes the chromatic number of G.
4. (16 points) Let $r=2 s+t$ where r, s, t are positive integers. The Kneser graph $K(r, s)$ has $\binom{r}{s}$ vertices corresponding to the s-element subsets of a set of r elements; adjacency corresponds to disjointness. Recall that the odd-girth of a graph is the length of its shortest off cycle. Prove that the odd-girth of $K(r, s)$ is $\geq r / t$.
5. ($4+15$ points) (a) Count the graphs on a given set of n vertices. (b) Show that there are at least $2 \begin{gathered}\binom{n}{2}\end{gathered} n$! nonisomorphic graphs on n vertices.
6. ($5+18$ points) (a) Define the quantity τ^{*} (fractional covering number) for a hypergraph. (b) Let $H=(V, E)$ be a regular k-uniform hypergraph. (k-uniformity means every edge has k vertices; regularity means every vertex belongs to the same number of edges.) Prove: $\tau^{*}=n / k$.
7. ($5+16$ points) Let us fix the positive integers k, ℓ, n where $k, \ell \leq n$. Let $A \subseteq[n]$ be a random subset of size k and $B \subseteq[n]$ a random subset of size ℓ (where $[n]=\{1,2, \ldots, n\}$). (a) What is the size of the sample space for this experiment? (b) Determine $E(|A \cap B|)$. (Hint: indicator variables.) Half the credit goes for a clear definition of your variables.
8. $(20+3$ points $)$ Recall that a tournament is an oriented complete graph. (Every edge is oriented in exactly one direction.) The vertices represent "players" and an edge $u \rightarrow v$ indicates that player u beat player v. We say that a tournament is k-paradoxical if to every set of k players there is a player who beat all those k players. (a) Prove that for every k the following hold: almost all tournaments are k-paradoxical. ("Almost
all" refers to the probability approaching 1 as $n \rightarrow \infty$. Our model is the uniform distribution over orientations of the complete graph: we flip a coin for each edge of the complete graph to decide its orientation.) (b) State the size of the sample space when the tournament has n vertices.
9. $\left(20+5\right.$ points) (a) For a graph G and a positive integer x let $f_{G}(x)$ denote the number of legal colorings of G from the set $\{1, \ldots, x\}$ of colors. (Not all colors need to be used.) Prove: for every graph, $f_{G}(x)$ is a polyinomial in x (the "chromatic polynomial"). (b) Compute the chromatic polynomial of the path of length n.
10. (12 points) A graph is self-complementary if it is isomorphic to its complement. Prove: if G is self-complementary then $\chi(G) \geq \sqrt{n}$. (n is the number of vertices.)
11. (BONUS 8B points) Let $S(n, 5)=\sum_{k=0}^{\infty}\binom{n}{5 k}$. Prove: there exists a constant $c>0$ such that for all sufficiently large n we have

$$
\left|S(n, 5)-\frac{2^{n}}{5}\right|<(2-c)^{n} .
$$

12. (BONUS 5B points) Let \mathcal{G} denote a (uniform) random graph on a given set of n vertices. What is the probability that all vertices of \mathcal{G} have even degree? Your answer should be a simple closed-form expression.
13. (BONUS 5B points) Prove:

$$
\sum_{i=0}^{k}\binom{n}{i} \leq\left(\frac{n \mathrm{e}}{k}\right)^{k}
$$

Total 200 points + 18B bonus

