SOLUTIONS TO EXERCISE SET #4

SCOTT MESSICK*

Exercise 4.1.

(a)
(b)

Define legal colorings of a hypergraph.
Prove: if an r-uniform hypergraph H has m < 277! edges then H is 2-
colorable.

Solution.

(a)

(b)

Let H = (V, E) be a hypergraph. A coloring is a function f : V — C where
C' is the set of “colors” (any set); f is a legal coloring if for each edge e € E,
|f(e)| > 1, i.e., there exist vertices u,v € E such that f(u) # f(v). In other
words, no edge is monochromatic.

First of all, the statement is false for » = 1: an edge of size 1 has no legal
coloring. So we are going to assume 1 > 2.

Pick a random (not necessarily legal) 2-coloring of H. The probability
space consists of all possible functions f: V — {0, 1}, uniformly weighted.
(So the size of the sample space is 2™ where n = |V|.) For each edge e, let
B. be the event that e is monochromatic. Let A = |J, Be, the event that
the coloring is illegal. We need to show that Pr(A) < 1.

Now Pr(B.) =2/2" = 1/2"~!. Therefore, by the union bound,

Pr(A) <Y Pr(B.)=m/2"" ' <1.
ecE

In fact, if m < 27! then the rightmost inequality is strict and we are done.
But the assumption was m < 2"~!. In this case the only way we could
have Pr(A) = 1 if we had equality everywhere in (1). This would require
equality in the union bound, which can only happen if the events in question
do not overlap. In our case, assuming m > 2, the events B, are not pairwise
disjoint because, for example, the elementary event that all vertices are
assigned color 1 belongs to all the B..
The remaining case: 1 =m = 2""!, so 7 = 1, which we did not allow. O

Exercise 4.2. Recall from class that an n x n matrix A is fully indecomposable
if it does not contain a k x (n — k) all-zero submatrix for any k (1 <k <n —1).
Prove: if A is a nonnegative, fully indecomposable matrix then so is AT A.

Solution. In fact we prove the more general statement that

Date: April 24, 2010.
*Slightly revised by instructor.



2 SCOTT MESSICK*

(%) if A and B are nonnegative, fully indecomposable n x n matrices then so is
AB.

We prove the contrapositive: if AB is not fully indecomposable, we prove that
either A or B must also not be fully indecomposable. So let us assume that for
some k, the matrix AB has a k x (n — k) all-zero submatrix. The entries of AB
are (a; - bj) where a1,...,a, € R™ are the rows of A and b1,...,b, € R” are the
columns of B. Thus we have a collection of k rows of A and collection of n — k
columns of B such that any respective dot product is zero. Now, a; - b; = 0 if and
only if the sets of indices of nonzero entries of a; and b;, respectively, are disjoint,
since all entries are nonnegative. Let J C [n] denote the set of those column indices
where any of our k rows a; have a nonzero entry; and let I C [n] denote the set
of those row indices where any of our n — k columns b; have a nonzero entry. Our
conclusion is that I N J = 0.

There are two cases: either |J| < k or |I| < n — k (or both). In the first case
we found a k x (n — k) all-zero submatrix in A; in the second case, a k x (n — k)
all-zero submatrix in B. O

Exercise 4.4. Let A be a nonnegative, irreducible n x n matrix. Let x be a
nonnegative eigenvector of A. Prove: x is positive.

Solution. Recall that an n x n matrix A is irreducible if it does not contain a
k x (n — k) all-zero submatrix that does not intersect the diagonal (the set of row
indices and column indices are disjoint). By Exercise 4.3, this is equivalent to the
statement that the digraph associated with A is strongly connected. (The vertex
set of this digraph is [n] and by definition we have i — j exactly if a;; # 0.)

Breaking the equation Ax = Ax down componentwise, we have that for each i,

n
)\l‘i: E Qi Tj.
j=1

Since A and z are nonnegative, any positive value for a term on the right-hand
side implies ; > 0. So whenever ¢ — j in the digraph, we have the implication
z; >0 = z; > 0. By induction it follows that if x; > 0 and there is a directed
path from ¢ to j then z; > 0. But since the digraph is strongly connected and
x; > 0 for at least one j, we have x; > 0 for all ¢, as desired. [J

Exercise 4.5. Let A be a nonnegative, irreducible n X n matrix. Let z,y be
nonnegative eigenvectors. Prove: x is a scalar multiple of y.

Solution. Let A and u be the associated eigenvalues, so Ax = Az and Ay = uy.
Assume without loss of generality A\ < p. Since by the previous problem both x
and y are strictly positive, we can assume by replacing y with a scalar multiple if
necessary that x > y and furthermore x; = y; for some i. For that i, we then have

n n
Az = Zaijxj > Zaijyj = pyi > Ay; = Ax;.
j=1 j=1
All these terms are therefore equal; in particular, A = p. Consequently, A(x —y) =
Az — y) but since x — y is nonnegative with a zero entry, by the previous problem,
it cannot be an eigenvector so in fact x —y = 0 and we are done. [J



