CMSC-37110 Discrete Mathematics FINAL EXAM December 11, 2012

Instructor: László Babai Ryerson 164 e-mail: laci@cs

This exam contributes 30% to your course grade.

Do not use book, notes. Show all your work. If you are not sure of the meaning of a problem, ask the instructor. The bonus problems are underrated, do not work on them until you are done with everything else.

- 1. (1+1+2+5+4+10 points) Recall that a symmetric real matrix $A \in M_n(\mathbb{R})$ is positive semidefinite if $(\forall x \in \mathbb{R}^n)(x^T A x \geq 0)$.
 - (a) Define positive definite matrices.
 - (b) Define indefinite matrices.
 - (c) Give an example of an indefinite 2×2 matrix.
 - (d) Let J denote the $n \times n$ all-ones matrix (every entry is 1). Prove that J is positive semidefinite.
 - (e) Which diagonal matrices are positive definite? State, prove.
 - (f) Let $A = (\alpha_{ij}) \in M_n(\mathbb{R})$ be an $n \times n$ matrix such that $(\forall i)(\alpha_{ii} > 1)$ and $(\forall i \neq j)(\alpha_{ij} = 1)$. (The diagonal entries are greater than 1 and the off-diagonal entries are equal to 1.) Prove that A is positive definite.
- 2. (14 points) True or false (state clearly). If "false," give a simple counterexample. If "true," do not prove. (Lose 1 point per wrong or missing answer and 2 points per wrong or missing counterexample. Lose 1 point for an unnecessarily complicated counterexample.)
 - (a) If $\varphi: V \to W$ is a linear map and v_1, \ldots, v_k are linearly independent vectors in V then $\varphi(v_1), \ldots, \varphi(v_k)$ are linearly independent vectors in W. **T F**
 - (b) If $\varphi: V \to W$ is a linear map and v_1, \ldots, v_k are linearly dependent vectors in V then $\varphi(v_1), \ldots, \varphi(v_k)$ are linearly dependent vectors in W. **T F**
 - (c) If A, B are matrices and both AB and BA are defined then A and B are square matrices. T F
 - (d) If A, B are positive matrices (all entries are positive) then $\operatorname{rk}(A+B) \ge \operatorname{rk}(A)$. **T F**
 - (e) If we multiply a square matrix by the scalar β then the value of its determinant is multiplied by β . **T F**
 - (f) The uniform distribution is a stationary distribution of every finite Markov Chain. ${f T}$ ${f F}$

- 3. (2+8 points) Recall that the operator norm of a real matrix $A \in \mathbb{R}^{k \times \ell}$ is defined as max ||Ax||/||x|| where the maximum is taken over all vectors $x \in \mathbb{R}^{\ell}$, $x \neq 0$.
 - (a) Let α_{ij} be an entry of the matrix $A \in \mathbb{R}^{k \times \ell}$. Prove: $||A|| \geq |\alpha_{ij}|$.
 - (b) Let B be a symmetric real matrix with eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$. Prove: $||B|| = \max_{1 \leq i \leq n} |\lambda_i|$.
- 4. (2+1+9 points) A matrix is called *orthogonal* if its columns form an orthonormal basis of \mathbb{R}^n .
 - (a) Describe the matrix of the rotation of the plane by θ with respect to the usual basis (a pair of orthogonal unit vectors).
 - (b) Prove that this matrix is orthogonal.
 - (c) Prove: if an $n \times n$ matrix A is orthogonal then its operator norm is 1.
- 5. (5+3 points) Let $A \in M_n(\mathbb{R})$. Assume $A^T = -A$. (a) Prove: if n is odd then $\det(A) = 0$. (b) Prove that this is not true for n = 2.
- 6. (8 points) Prove: for all sufficiently large n, the number of non-isomorphic trees with n vertices is greater than 2.7^n . Use Cayley's formula n^{n-2} ; state what it is that this formula counts.
- 7. (8 points) Let A be the adjacency matrix of a graph. (So A is a symmetric real matrix.) Let λ_1 be the largest eigenvalue of A. Prove: $\lambda_1 \geq 2m/n$ where m is the number of edges, so 2m/n is the average degree.
- 8. (12 points) Let T be the transition matrix of an irreducible Markov Chain (i. e., the digraph of possible transitions is strongly connected). Let $\pi = (\pi_1, \dots, \pi_n)$ be a stationary distribution for the Markov Chain. Prove: $(\forall i)(\pi_i > 0)$. Do not use the Perron Frobenius Theorem.
- 9. (12 points) Prove: if λ is an eigenvalue of a stochastic matrix then $|\lambda| \leq 1$. (Note that λ is a complex number.) Do not use the Perron Frobenius Theorem.
- 10. (12 points) Let p be an odd prime and $k \not\equiv 0 \pmod{p}$. Prove:

$$k^{(p-1)/2} \equiv \pm 1 \pmod{p}.$$

11. (15 points) In a well-shuffled deck of n cards, numbered 1 through n, what is the probability that cards #1 and #2 come next to each other (in either order)? Your answer should be an extremely simple expression; make it as simple as possible. Prove your answer.

- 12. (2+6 points) Find (a) the characteristic polynomial and (b) the minimal polynomial of the matrix $N = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$. Prove your answer to (b).
- 13. (5 points) For what values of the integer m is the following statement true:

$$(\forall x, y)(xy \equiv 0 \pmod{m} \Rightarrow (x \equiv 0 \pmod{m}) \text{ or } y \equiv 0 \pmod{m})$$

Prove your answer.

- 14. (3+5 points)
 - (a) Define the Erdős Rado arrow symbol $n \to (k, \ell)$.
 - (b) Prove: $(\forall r, s \ge 1)(rs \nrightarrow (r+1, s+1))$.
- 15. (6 points) Construct a probability space and a nonnegative random variable X such that E(X) = 100 but $P(X > 1) \le 1/33$. Make your sample space as small as possible.
- 16. (6+8+5+6+6B points)
 - (a) Draw the diagram of a weakly connected finite Markov Chain which has more than one stationary distribution. Give two stationary distributions for your Markov Chain. Use as few states as possible.
 - (b) Recall that a finite Markov Chain is *irreducible* if its transition digraph is strongly connected. Draw the diagram of a reducible (not irreducible) finite Markov Chain with a unique stationary distribution. State the stationary distribution. Do not prove. Use as few states as possible.
 - (c) Define ergodicity of a finite Markov Chain. Define the terms used in the definition in terms of directed graph concepts.
 - (d) Draw the diagram of an irreducible but non-ergodic finite Markov Chain.
 - (e) (BONUS) Prove: the stationary distribution of an irreducible finite Markov Chain is unique. (Prove uniqueness only. Do not prove the existence of a stationary distribution.) Do not use the Frobenius-Perron Theorem.
- 17. (8 points) Consider a deck of 4n cards, containing n kinds of cards, 4 of each kind. We pick a hand of k cards. What is the probability that no two of the cards are of the same kind? Give a simple closed-form expression using binomial coefficients.
- 18. (10+8 points)

- (a) Consider the simple random walk on the integers: $X_0 = 0$ and $X_{t+1} = X_t \pm 1$, each possibility having probability 1/2. (The frog flips a coin at each step to decide whether to move right or left by one step.) Compute the probability that $X_{2n} = 0$ (in 2n steps the frog is back at the starting point). Give a simple closed-form expression.
- (b) Asymptotically evaluate this probability. Your answer should be of the form an^bc^n . Determine the constants a, b, c.
- 19. (20+10 points) Consider a random graph G on a given set of n vertices. Let $\alpha(G)$ denote the size of the largest independent set of G.
 - (a) Prove: for almost all graphs G we have $\alpha(G) \leq 1 + 2\log_2 n$.
 - (b) Prove: for almost all graphs G we have $\chi(G) \geq (\alpha(\overline{G}))^{100}$. Here $\chi(G)$ denotes the chromatic number of G and \overline{G} is the complement of G, so $\alpha(\overline{G})$ is the clique number of G.
- 20. (4 + 14 + 6 + 8 + 8 points) We have n guests and n gift items. For each gift item, we draw a guest's name at random. The same name can be drawn multiple times.
 - (a) What is the size of the sample space for this experiment?
 - (b) A guest is unlucky if his/her name is never drawn. Let X be the number of unlucky guests. Determine E(X).
 - (c) Asymptotically evaluate your answer to (b). Give a very simple expression.
 - (d) Let p_n denote the probability that X = 0 (none of the guests is is unlucky). Determine p_n (give a simple closed-form expression).
 - (e) True or false: $p_n < 1/2.7^n$ for all sufficiently large n. Prove your answer. (Note: e = 2.718...)
- 21. (8 points) Let F_n denote the *n*-th Fibonacci number (starting with $F_0 = 0$, $F_1 = 1$). Prove: for all n, the numbers F_n and F_{n+2} are relatively prime.
- 22. (16 points) Find an integer x between 1 and 30 such that for every integer $a \ge 0$ we have $a^x \equiv a^{7^{150}} \pmod{31}$. (The exponent is 7^{150} .) Do not use a calculator.
- 23. (BONUS 8B points) Let n = pq where p, q are distinct primes. Prove that the following statement is false: $(\forall a)(\text{if }\gcd(a,n)=1 \text{ then } a^{n-1}\equiv 1 \pmod{n}).$
- 24. (BONUS: 15B points) Recall that the distance between a pair of vertices of a graph is the length of the shortest path between them. The

- diameter of a graph is the maximum of the distances between pairs of vertices. Prove: almost all graphs on n vertices have diameter 2.
- 25. (BONUS: 4 points) Prove: if a 2×2 real matrix A has no real eigenvalues then A is diagonalizable over \mathbb{C} .
- 26. (BONUS: 8B points) We say that a square matrix $A \in M_n(\mathbb{R})$ is diagonally dominated if $(\forall i)(|\alpha_{ii}| > \sum_{j \neq i} |\alpha_{ij}|)$. (Each diagonal entry is greater in absolute value than the sum of the absolute values of all other entries in the same row.) Suppose A is diagonally dominated. Prove: $\det(A) \neq 0$. (Hint: prove that the columns are linearly independent.)
- 27. (BONUS: 10B points) Let G be a connected, non-bipartite graph. Let f(k) denote the number of closed walks of length k in G. Prove: $f(k) \sim \lambda_1^k$ where λ_1 is the largest eigenvalue of A.
- 28. (BONUS 15B points) Let A_1, \ldots, A_m be events such that $(\forall i)(P(A_i) = 1/2)$ and $(\forall i \neq j)(P(A_i \cap A_j) \leq 1/5)$. Prove: $m \leq 6$.
- 29. (BONUS: 10B points) Prove: a planar graph G with $n \geq 3$ vertices has at most 3n-6 edges. Hint: we may assume G is connected (why?). Note that every region has at least 3 sides. Infer that $3r \leq 2m$ where r is the number of regions. State and use Euler's formula. Where did the argument use the assumption that $n \geq 3$?