CMSC-37110 Discrete Mathematics MIDTERM EXAM November 15, 2012

Instructor: László Babai Ryerson 164 e-mail: laci@cs

This exam contributes 20% to your course grade.

Do not use book, notes. Show all your work. If you are not sure of the meaning of a problem, ask the instructor. The bonus problems are underrated, do not work on them until you are done with everything else.

1. (7 points) For what values of the integer m is the following statement true:

$$(\forall x, y)(xy \equiv 0 \pmod{m} \Rightarrow (x \equiv 0 \pmod{m}) \text{ or } y \equiv 0 \pmod{m})$$

- 2. (14 points) Compute without any calculations the value x such that $0 \le x \le 30$ and $x \equiv 7^{30000000001}$ (mod 31). Reason your answer.
- 3. (10+5 points) Let a = 5k + 3 and b = 9k 2. (a) Prove: gcd(a, b) is either 1 or 37. (b) Find infinitely many values of k such that gcd(a, b) = 37.
- 4. (15 points) Let p be an odd prime. Suppose for some x we have $x^2 \equiv -1 \pmod{p}$. Prove: $p \equiv 1 \pmod{4}$. Hint: Fermat's little Theorem.
- 5. (5+8 points) (a) Define the Erdős Rado arrow symbol $n \to (k, \ell)$. (b) Prove: $(\forall r, s \ge 1)(rs \not\to (r+1, s+1))$.
- 6. (6 points) True or false: $\ln n = \Theta(\log_2 n)$. Prove your answer.
- 7. (15 points) Prove: for all sufficiently large values of n, the number of non-isomorphic trees with n vertices is greater than 2.7^n .
- 8. (5 points) Evaluate this expression in closed form:

$$\sum_{k=0}^{n} \binom{n}{k} 2^{-k/2}.$$

- 9. (10 points) Construct a nonnegative random variable X such that E(X) = 1 and Var(X) = 10. Make your sample space as small as possible.
- 10. (15 points) Prove: for all sufficiently large n, the probability that a random graph on a given set of n vertices is planar is less than $2^{-0.49n^2}$.

- 11. (4+2+10 points) Let G_n be a random graph on a given set of n vertices. Let X_n denote the number of triangles in G_n . (a) Determine $E(X_n)$. (b) What is the size of the sample space of this experiment? (c) In class we proved that $\operatorname{Var}(X_n) \sim n^4/128$. Prove the Weak Law of Large Numbers for X_n . This means the following. Given $\epsilon > 0$, let $p(n, \epsilon)$ denote the probability that $|X_n E(X_n)| \ge \epsilon E(X_n)$. Prove: for every $\epsilon > 0$ we have $\lim_{n \to \infty} p(n, \epsilon) = 0$.
- 12. (16 points) Let p_1, \ldots, p_n be distinct odd prime numbers, and let N denote their product. How many integers x among $0, 1, \ldots, N-1$ satisfy the congruence $x^2 \equiv 1 \pmod{N}$? Your answer should be a very simple formula. Prove your answer. Name the result used.
- 13. (5+9+6 points) Let X be an integer chosen at random from the set $\{0,1,\ldots,n\}$. Let $Y=\binom{n}{X}$. Determine (a) E(Y) and (b) Var(Y). Give simple closed-form expressions. (c) Show that $Var(Y) \sim an^b c^n$ for some constants a,b,c; determine a,b,c.
- 14. (16 points) We have a deck of n cards, numbered $\{1, 2, ..., n\}$. A "hand" consists of k cards. We shuffle the cards and deal a hand. What is the probability that the hand does not include consecutive pairs of numbers? (i and i+1 are consecutive numbers.) Your answer should be a very simple closed-form expression (a quotient of two binomial coefficients, no summation, no dot-dot-dots). Prove your answer. State the size of the sample space of this experiment.
- 15. (7 points) Recall that $\pi(n)$ denotes the number of primes $\leq n$. Decide which of the following three statements, involving the little-oh notation, is true. State and prove your answer. Name and state the theorem used. (a) $\pi(n) = o(n^{0.9})$ (b) $n^{0.9} = o(\pi(n))$ (c) neither.
- 16. (10+4B points) Prove: if $1 \le k \le n$ then $\binom{n}{k} < \left(\frac{en}{k}\right)^k$. (b) (BONUS) Prove: $\sum_{j=0}^k \binom{n}{j} < \left(\frac{en}{k}\right)^k$.
- 17. (BONUS) (4B points) Prove that a triangle-free graph has chromatic number $O(\sqrt{n})$.
- 18. (BONUS) (4B points) Prove: for almost all graphs G we have $\chi(G) > (\alpha(\overline{G}))^{100}$.
- 19. (BONUS) (3B points) Prove: all longest paths in a tree share a vertex.
- 20. (BONUS) (4B points) Let G denote a random graph on a given set of n vertices. What is the probability that all vertices of G have even degree? Your answer should be a simple closed-form expression.
- 21. (BONUS) (4B points) Let $S(n,3) = \sum_{k=0}^{\infty} {n \choose 3k}$. Prove: $|S(n,3) 2^n/3| < 1$.