1. (18 points) Let K be an n-bit integer. We are given a function $g : \{1, 2, \ldots, K\} \rightarrow \{0, 1\}$ by a black box: we can feed an integer x ($1 \leq x \leq K$) to the black box and it produces the value $g(x)$.

Suppose $g(1) = 0$ and $g(K) = 1$. Find a value y such that $g(y) = 0$ and $g(y + 1) = 1$ ($1 \leq y \leq K - 1$). Use as few queries to the black box as possible. State the number of queries made in terms of n. Describe your algorithm in elegant pseudocode.
2. (5 points) Recall that a Boolean function in \(n \) Boolean variables is a function \(f : \{0, 1\}^n \rightarrow \{0, 1\} \). Count the Boolean functions in \(n \) Boolean variables. Your answer should be a simple closed-form expression. Do not prove.

3. (17 points) Define the complexity class NP. Your answer should begin with the words “The language \(L \subseteq \Sigma^* \) belongs to NP if”; the rest of the answer should be a formula, no English words (except for logical connectives like “AND” and “OR”). Watch your quantifiers.