Problem 1. Calculate the g.c.d. of two positive integers, \(a \geq b \geq 0 \).

Solution: Euclid’s algorithm.

Pseudocode 1A.

0 Initialize: \(A := a, B := b \)
1 \qquad \textbf{while} \ B \geq 1 \ \textbf{do}
2 \qquad \quad \text{division:} \ A = Bq + R, \ 0 \leq R \leq B - 1
3 \qquad \quad A := B, \ B := R
4 \quad \textbf{end(while)}
5 \textbf{return} \ A

The correctness of the algorithm follows from the following loop invariant:

\[\text{g.c.d.}(A, B) = \text{g.c.d.}(a, b). \]

(In addition, at the end we use the fact that \(\text{g.c.d.}(A, 0) = A \).)

The efficiency of the algorithm follows from the observation that after every two rounds, the value of \(B \) is reduced to less than half. (Prove!) This implies that the number of rounds is \(\leq 2n \) where \(n \) is the number of binary digits of \(b \). Therefore the total number of bit-operations is \(O(n^3) \), so this is a polynomial-time algorithm. (Good job, Euclid!)

Pseudocode 1B: recursive.

0 procedure g.c.d.(a, b) \ (a \geq b \geq 0)
1 \quad \textbf{if} \ b = 0 \ \textbf{then return} \ a
2 \quad \textbf{else} \ \text{division:} \ a = bq + r, \ 0 \leq r \leq b - 1
3 \quad \textbf{return} \ \text{g.c.d.}(b, r)

(This code does not require a separate analysis except to clarify that it encodes the same algorithm. Clarify!)
Problem 2. Calculate $a^b \mod m$ where a, b, m are integers, $a, m \geq 1, b \geq 0$.

Solution: the method of repeated squaring.

Pseudocode 2A.

0 Initialize: $X := 1, B := b, A = (a \mod m)$
1 while $B \geq 1$ do
2 if B odd then $B := B - 1, X := (AX \mod m)$
3 else $B := B/2, A := (A^2 \mod m)$
4 end(while)
5 return X

The correctness of the algorithm follows from the following loop invariant:

$X \cdot A^B \equiv a^b \mod m$.

The efficiency of the algorithm follows from the observation that after every two rounds, the value of B is reduced to less than half. (Prove!) This implies that the number of rounds is $\leq 2n$ where n is the number of binary digits of b. Moreover, we never deal with integers greater than m^2. Therefore the total number of bit-operations is $O(n(\log m)^2) \leq O((\log a + \log b + \log m)^3)$, so this is a polynomial-time algorithm: the length of the input is the total number of bits of a, b, m, which is $\approx \log a + \log b + \log m$.

Pseudocode 2B: recursive.

0 procedure $f(a, b, m) = (a^b \mod m)$ ($b \geq 0, a, m \geq 1$)
1 if $b = 0$ then return 1
2 elseif b odd then return $a \cdot f(a, b-1, m) \mod m$
3 elseif b even then return $f((a^2 \mod m), b/2, m)$

(This code does not require a separate analysis except to clarify that it encodes the same algorithm. Clarify!)

Note. Although halving plays a central role in both problems, these are not genuine instances of “Divide and Conquer”: we are not dividing the set of options into two parts with which we would deal separately. Instead, we have a straight line of attack. In such cases the explicit (nonrecursive) algorithm is preferable in practice as well as in theory; a practical consideration might be to avoid unnecessary stacks used by the OS to handle recursion.