Algorithms – CMSC 37000

Dynamic programming: The all-ones square problem

Instructor: László Babai Ry-164 e-mail: laci@cs.uchicago.edu

Problem. Given an $n \times n$ array A of zeros and ones, find the maximum size of a contiguous square of all ones. (You do not need to locate such a largest all-ones square, just determine its size.) Solve this problem in *linear time*. "Linear time" means the number of steps must be O(size of the input). In the present problem, the size of the input is $O(n^2)$. Manipulating integers between 0 and n counts as one step; such manipulation includes copying, incrementing, addition and subtraction, looking up an entry in an $n \times n$ array.

Describe your solution in **pseudocode.** The solution should be *very simple*, no more than a few lines. **Elegance counts.**

Example:

1	0 1 0 1 1	1	1	0	1
1	1	0	1	1	1
1	0	1	1	1	1
1	1	1	1	1	1
1	1	1	1	1	0
1	1	1	0	1	1

In this example, the answer is 3. There are three contiguous 3×3 square subarrays of all-ones. One is indicated below by <u>underlines</u>, another is shown in a box, the third one is indicated by *Italics*.

1	0	1	1	0	1
1	1	0	1	1	1
1	0	1	1	1	1
1	<u>1</u>	1	1	1	1
1	<u>1</u>	1	1	1	0
1	<u>1</u>	1	0	1	1