CMSC-37110 Discrete Mathematics FINAL EXAM December 11, 2014

Instructor: László Babai Ryerson 164 e-mail: laci@cs

This exam contributes 35% to your course grade.

Do not use books, notes, electronic devices. Show all your work. If you are not sure of the meaning of a problem, ask the instructor. The bonus problems are underrated, do not work on them until you are done with everything else.

- 1. (20+20+10B points) Let A be an $n \times n$ matrix and λ an eigenvalue. Recall: the geometric multiplicity of λ is the maximum number of linearly independent eigenvectors to eigenvalue λ . The algebraic multiplicity of λ is k if the characteristic polynomial $f_A(t)$ is divisible by the polynomial $(t \lambda)^k$ but not divisible by the polynomial $(t \lambda)^{k+1}$.
 - (a) Determine (a1) the geometric and (a2) the algebraic multiplicity of the eigenvalue $\lambda=2$ for the matrix

$$A = \left(\begin{array}{ccccc} 17 & 13 & 11 & 7 & 5 \\ 0 & 2 & 1 & -7 & 5 \\ 0 & 0 & 2 & 3 & -3 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & -1 & 3 \end{array}\right)$$

(Hint: Use the Rank-Nullity Theorem to determine the geometric multiplicity.) Show your work. Result without details of the calculation will not be accepted. DO NOT USE electronic devices.

- (b) (BONUS) Prove: For any $n \times n$ matrix B and any eigenvalue λ of B, the geometric multiplicity of λ is always \leq the algebraic multiplicity.
- 2. (5+15+20+5 points) For each of the following relations on the universe specified, determine whether or not it is an equivalence relation. Clearly answer YES or NO. Prove your answers.
 - (a) Universe: the integers ≥ 2 . Relation: "not relatively prime."
 - (b) Universe: all integers. Relation: " $x^2 \equiv y^{14} \pmod{7}$."
 - (c) Universe: all non-trivial events in the uniform probability space over a sample space of size n. Relation: "not independent." Your answer should depend on n.
 - (d) Universe: all infinite sequences of real numbers. Relation: " $a_n b_n = O(n)$."

1

- 3. (8+20+10 points) Let A be an $n \times n$ real symmetric matrix with eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$. Let $\mu = \max_i |\lambda_i|$.
 - (a) The Spectral Theorem says that A has an orthonormal eigenbasis. What does this mean? Define "orthonormal eigenbasis." State how many vectors are in an orthonormal eigenbasis of A.
 - (b) Prove: For every $v \in \mathbb{R}^n$, we have $||Av|| \le \mu ||v||$. (Use the Spectral Theorem but no other theorems that we did not prove in class. Recall that the norm of $v = (v_1, \dots, v_n)^T \in \mathbb{R}^n$ is defined as $||v|| = \sqrt{v^T v} = \sqrt{\sum v_i^2}$. (T stands for transpose).)
 - (c) Prove: There exists $w \in \mathbb{R}^n$, $w \neq 0$ such that $||Aw|| = \mu ||w||$.
- 4. (16 points) A graph G has n vertices, out of which k vertices have degree 7 and the remaining (n-k) vertices have degree 16. Determine the number of paths of length 2 in G. (Note: the path u-v-w and the path w-v-u count as the same path, so for instance K_3 has 3 paths of length 2.)
- 5. (9+9 points) Let $\varphi: V \to W$ be a linear map. For each of the following statements, decide whether or not the statement is true for every φ .
 - (a) If the vectors $v_1, \ldots, v_k \in V$ are linearly independent then their images, $\varphi(v_1), \ldots, \varphi(v_k) \in W$ are linearly independent.
 - (b) If the vectors $v_1, \ldots, v_k \in V$ are linearly dependent then their images, $\varphi(v_1), \ldots, \varphi(v_k) \in W$ are linearly dependent.

If your answer is "YES," prove. If your answer is "NO," give a **specific** counterexample (define V, W, φ , and the vectors v_1, \ldots, v_k).

- 6. (12+15+15+6B points) Consider the following random walk on the number line. X_t denotes the position of our wandering particle at time t. We start at the origin: $X_0 = 0$; and then at each time step, the particle moves one step to the right with probability 2/3 or one step to the left with probability 1/3. Formally: $P(X_{t+1} = j+1 \mid X_t = j) = 2/3$ and $P(X_{t+1} = j 1 \mid X_t = j) = 1/3$.
 - (i) Determine $E(X_t)$.
 - (ii) Determine $Var(X_t)$.
 - (iii) Determine the probability $p_t(j) = P(X_t = j)$. Your answer should be a simple closed-form expression.
 - (iv) (BONUS) What is the most likely position of the particle at time t? Call this position j_t , so $p_t(j_t) = \max_i p_t(j)$. Prove: $|j_t E(X_t)| \le 1$.
- 7. (3+15 points) Select a random integer X with n digits such that all digits are odd (i. e., the digits are from the set $\{1, 3, 5, 7, 9\}$).

- (a) What is the size of the sample space for this experiment?
- (b) What is the probability that each of the 5 odd digits actually occur in X? Your answer should be a closed-form expression (no summation symbols or dot-dot-dots).
- 8. (20 + 5 points) Let G be a graph with n vertices and $\leq n$ edges.
 - (a) Prove: $\chi(G) = O(\sqrt{n})$. (" χ " denotes the chromatic number.)
 - (b) Prove that this bound is tight, i.e., construct an infinite family of graphs satisfying the condition and having chromatic number $\chi(G) = \Omega(\sqrt{n})$.
- 9. (2+12 points) We flip 5 fair coins. Let X_i be the indicator variable of the event that the *i*-th coin comes up "Heads." (a) State the size of the sample space for this experiment. (b) What is the probability of the event that $X_1 = X_2X_3 + X_4X_5$? Show all your work.
- 10. (20 points) Consider a Bernoulli trial with probability p of success, i.e., we flip a biased coin that comes up Heads with probability p and Tails with probability 1-p; "Heads" counts as "success." We keep flipping the coin until the first success. Let X denote the number of times we flipped the coin. Determine E(X).
- 11. (18 points; lose up to 4 points for each mistake) Recall that an $n \times n$ matrix A is non-singular if an only if the columns of A are linearly independent. State five conditions that are equivalent to this: "A is non-singular if and only if ...". Complete the sentence with a statement involving the concept in parentheses in each case.
 - (a) (determinant)
 - (b) (rank)
 - (c) (solutions to system of linear equations [which system?])
 - (d) (eigenvalues)
 - (e) (inverse)
- 12. (12 points) Let $A = (a_{ij})$ be an $n \times n$ matrix with integer entries. Assume each diagonal entry a_{ii} is odd and each off-diagonal entry a_{ij} $(j \neq i)$ is even. Prove: A is nonsingular.
- 13. (12 points) Asymptotically evaluate the binomial coefficient $\binom{3n}{n}$. Your answer should be of the form $\binom{3n}{n} \sim an^b c^n$ where a, b, c are constants. Determine a, b, c.
- 14. (12 points) Let G = (V, E) and H = (V, F) be two graphs with the same vertex set, V. Let $L = (V, E \cup F)$. Prove: $\chi(L) \leq \chi(G)\chi(H)$. (" χ " denotes the chromatic number.)

- 15. (12 points) Prove: if a finite Markov Chain has two stationary distributions then it has infinitely many.
- 16. (8 points) Evaluate this expression in closed form:

$$\sum_{k=0}^{n} \binom{n}{k} 2^{-k/2}.$$

- 17. (BONUS 8 points) Recall: an $n \times n$ matrix is *stochastic* if it is the transition matrix of a finite Markov Chain. Prove: if λ is a (real or complex) eigenvalue of a stochastic matrix then $|\lambda| \leq 1$. (If you are uncomfortable with complex numbers, assume λ is real for 8 points.)
- 18. (BONUS 1+3+5 points) Let $A=(a_{ij})$ be the adjacency matrix of the graph G=(V,E) where $V=[n]=\{1,\ldots,n\}$, so $a_{ij}=1$ if the vertices i and j are adjacent and 0 otherwise. Let $\lambda_1 \geq \cdots \geq \lambda_n$ be the eigenvalues of A. Express (a) $\sum_i \lambda_i$ (b) $\sum_i \lambda_i^2$ (c) $\sum_i \lambda_i^3$ in terms of simple combinatorial parameters of G such as the number of certain small subgraphs.
- 19. (BONUS 6B points) Prove:

$$\sum_{i=0}^{k} \binom{n}{i} \le \left(\frac{ne}{k}\right)^k.$$

- 20. (BONUS 3B points) A graph is self-complementary if it is isomorphic to its complement. Prove: if G is self-complementary then $\chi(G) \geq \sqrt{n}$. (n is the number of vertices.)
- 21. (BONUS 3B points) Prove that the $3 \times 3 \times 3$ grid graph has no Hamilton path ending in the center. (A Hamilton path is a path that includes every vertex.) (The graph in question is a 3-dimensional grid; it has 27 vertices.)
- 22. (BONUS 2B points) Let $A, B \in M_n(\mathbb{R})$ (real $n \times n$ matrices). Prove: $AB BA \neq I$ (where I is the identity matrix).