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14.3. Let x and y be vertices belonging to the same strong component of G. Then there is
an x → y walk, say of length k1, and a y → x walk, say of length k2. Then there is a closed
x → y → x walk of length k = k1 + k2. Now, any closed walk passing through y (say of length
m) can be extended to a closed walk passing through x by traversing x → y, then traversing the
closed y → y walk, then traversing y → x. The length of this walk is k1 +m+ k2 = k +m. Since
this is a closed walk passing through x, it follows that per(x) | k + m. But since the x → y → x
walk is also a closed walk passing through x, we have per(x) | k. Hence per(x) | (k + m − k), i.e.,
per(x) | m. So per(x) divides the lengths of every closed walk through y, hence their gcd. That is,
per(x) | per(y). But by the same argument, per(y) | per(x), so because per(x) and per(y) are both
positive, it follows that they are equal, that is, per(x) = per(y) if x and y are in the same strong
component.

�

15.3. The characteristic polynomial of Rθ is:

fRθ
(λ) = det

(
λ− cos θ sin θ
− sin θ λ− cos θ

)
= (λ− cos θ)

2
+ sin2 θ

= λ2 − 2λ cos θ + cos2 θ + sin2 θ

= λ2 − 2λ cos θ + 1.

Let us calculate the roots. We can apply the quadratic formula to the characteristic polynomial,
or get the solution faster by directly solving the equation (λ− cos θ)

2
+ sin2 θ = 0, or, equivalently,

(λ− cos θ)
2

= − sin2 θ, i.e., λ − cos θ = ±i sin θ where i2 = −1. So the eigenvalues are λ =
cos θ ± i sin θ = e±iθ. To find the eigenvectors, we have(

(cos θ ± i sin θ)x1
(cos θ ± i sin θ)x2

)
=

(
cos θ − sin θ
sin θ cos θ

)(
x1
x2

)
=

(
x1 cos θ − x2 sin θ
x1 sin θ + x2 cos θ

)
So then

(cos θ ± i sin θ)x1 = x1 cos θ − x2 sin θ
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±ix1 sin θ = −x2 sin θ

x1 = ±ix2

so that eigenvector corresponding to e±iθ is

(
±i
1

)
.

�

15.4. (a) The characteristic polynomial of A is

fA(λ) = det

(
λ− 1 −1

0 λ− 1

)
= (λ− 1)2 − (−1) · 0 = (λ− 1)2

which has a root of λ = 1, so the only eigenvalue of A is 1. To compute its eigenvectors, we solve
Ax = x. We have

Ax =

(
1 1
0 1

)(
x1
x2

)
=

(
x1 + x2
x2

)
so we require x2 = 0. That is, all eigenvectors of A are scalar multiples of

(
1
0

)
. Since all eigenvectors

of A are scalar multiples of each other, the space spanned by the eigenvectors is a one-dimensional
subspace of F2. In particular, no two eigenvectors of A can span F2, so A does not have an eigenbasis.

(b) The characteristic polynomial of B is

fB(λ) = det

(
λ− 1 −1

0 λ− 2

)
= (λ− 1)(λ− 2)− (−1) · 0 = (λ− 1)(λ− 2)

which has roots (eigenvalues) λ = 1, 2. Since the eigenvalues are distinct, their corresponding eigen-
vectors are linearly independent, and thus are an eigenbasis because any two linearly independent
vectors in F2 are a basis.

�

15.5. (a) First add each of the first (n− 1) rows to the last, so that every entry of the last row
is a+ (n− 1)b. Then, subtract the last column from each of the remaining columns. This produces
an upper triangular matrix where every diagonal entry (except that on the bottom row) is a − b
and the bottom-right entry is a + (n − 1)b. The determinant of the matrix is then the product of
the diagonal entries, that is, (a− b)n−1(a+ (n− 1)b).

(b1) If J is the n × n all-ones matrix, then we can write J − λI in the form above with b = 1
and a = 1− λ. Then the characteristic polynomial is

fJ = (1− λ− 1)
n−1

(1− λ+ (n− 1)1) = (−λ)n−1(n− λ) = (−1)n
(
λn − nλn−1

)
(b2) Since the characteristic polynomial is (−λ)n−1(n − λ), it is easy to see that it has roots

(eigenvalues) λ = 0 with multiplicity n− 1 and λ = n with multiplicity 1.
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(b3) [This solution was slightly modified by the instructor.] We note that
1 1 · · · 1
1 1 · · · 1
...

...
. . .

...
1 1 · · · 1



x1
x2
...
xn

 =


x1 + · · ·+ xn
x1 + · · ·+ xn

...
x1 + · · ·+ xn


So if Jx = nx then all coordinates of nx must be the same; by scaling we may then choose

x1 = · · · = xn = 1, so let us take v1 =


1
1
...
1

; this is an eigenvector to eigenvalue n. Let now

U = {x ∈ Rn |
∑n
i=1 xi = 0}. So the nonzero vectors in the subspace U are precisely the eigenvectors

of J to eigenvalue 0. For i ≥ 2, let us choose vi ∈ U to have first coordinate 1 and i-th coordinate
−1, all other coordinates 0. So the vectors vi are the columns of the matrix

B =


1 1 1 · · · 1
1 −1 0 · · · 0
1 0 −1 · · · 0
...

...
...

. . .
...

1 0 0 · · · −1


We claim that v1, . . . , vn are linearly independent, i.e., the matrix B is nonsingular. Columns 2
to n are linearly independent because these columns contain the negative of the (n − 1) × (n − 1)
identity matrix as a submatrix. So we just have to show that v1 /∈ span{vi | 2 ≤ i ≤ n}. This
is true because v2, . . . , vn ∈ U and v1 /∈ U . (Alternatively, we can prove that B is nonsingular by
proving that det(B) 6= 0. By adding rows 2, . . . , n to the first row we get a triangular matrix with
nonzero diagonal, so det(B) 6= 0; in fact, det(B) = n(−1)n−1.)

We conclude that the vectors vi are are linearly independent, hence a basis of Rn, i.e., an
eigenbasis of J .

�
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