Algorithms in Finite Groups

MATH 37500: László Babai Scribe: Sameer Kailasa

09/30/14

1 Characteristic subgroups, solvability, nilpotence

Exercise 1.1. G' = [G, G] denotes the commutator subgroup of G. Prove:

- (a) G/G' is abelian.
- (b) G' is the smallest normal subgroup $N \triangleleft G$ such that G/N is abelian.

Exercise 1.2. We defined solvability via the commutator chain. Prove: G is solvable \iff all of its composition factors are abelian.

Exercise 1.3. G is a simple abelian group $\iff G \cong \mathbb{Z}_p := \mathbb{Z}/p\mathbb{Z}$ for some prime p.

Exercise 1.4. Conjugation by an element of G is an automorphism of G. These automorphisms are called *inner automorphisms*. They form the group Inn(G). What is the kernel of the natural homormophism $G \to Inn(G)$?

Exercise 1.5. $\operatorname{Inn}(G) \triangleleft \operatorname{Aut}(G)$. The quotient $\operatorname{Out}(G) = \operatorname{Aut}(G)/\operatorname{Inn}(G)$ is the outer automorphism group.

Exercise 1.6. Every characteristic subgroup is normal, but a normal subgroup is not necessarily characteristic. Find a very small counterexample.

Exercise 1.7. G' char G and Z(G) char G.

Exercise 1.8. Being a characteristic subgroup is a transitive relation: If H char K char G then H char G.

Exercise 1.9. Being a normal subgroup is, in general, not a transitive relation. Find a small group G with subgroups H, K such that $K \triangleleft H \triangleleft G$ but $K \not \triangleleft G$. (Hint: |G| = 12 suffices.)

Exercise 1.10. If H char $K \triangleleft G$ then $H \triangleleft G$.

09-30-2014

Exercise 1.11. If $H \triangleleft G$ char K then it does not follow that $H \triangleleft G$. Find a small counterexample.

Exercise 1.12. A finite group G is characteristically simple \iff there is a simple group T such that $G \cong T \times T \times \cdots \times T$.

Exercise 1.13. Let T_1, T_2, \dots, T_k be non-abelian finite simple groups. How many normal subgroups does $T_1 \times T_2 \times \dots \times T_k$ have? (Answer: 2^k)

Exercise 1.14. How many subgroups does $\mathbb{Z}_p \times \mathbb{Z}_p$ have? What is the number of subgroups of order p^k in the elementary abelian group of order p^n (i. e., the direct product of n copies of \mathbb{Z}_p)?

Exercise 1.15. For a prime power q and $n \ge k \ge 0$, the Gaussian binomial coefficient $\begin{bmatrix} n \\ k \end{bmatrix}_q$ (also called "q-binomial coefficient") is defined as

$$\begin{bmatrix} n \\ k \end{bmatrix}_{q} = \frac{(q^{n} - 1)(q^{n-1} - 1)\cdots(q^{n-k+1} - 1)}{(q^{k} - 1)(q^{k-1} - 1)\cdots(q - 1)}$$

- (a) Prove: $\begin{bmatrix} n \\ k \end{bmatrix}_q$ is the number of k-dimensional subspaces in the n-dimensional space over \mathbb{F}_q (the field of order q).
- (b) Prove: $\lim_{q\to 1} {n\brack k}_q = {n\choose k}$. ("Sets are subspaces over the 1-element field.")

Exercise 1.16. The descending central series (or "lower central series") of the group G is defined by $K_1(G) = G$, $K_{i+1}(G) = [G, K_i(G)]$. The ascending central series (or "upper central series") is defined by $Z_0(G) = 1$, $Z_1(G) = Z(G)$, and $Z_{i+1}(G)/Z_i(G) = Z(G/Z_i(G))$. We say that G is nilpotent if $(\exists i)(K_i(G) = 1)$. Prove: G is nilpotent $\iff (\exists j)(Z_i(G) = G)$.

Exercise 1.17. G is nilpotent $\implies G$ is solvable.

Exercise 1.18. Find a very small group that is solvable but not nilpotent. (Hint: |G| = 6 suffices.)

Exercise 1.19. For any subset $S \subseteq G$, the number of subsets of G conjugate to S is $|G:N_G(S)|$. In particular, the number of conjugates of an element g is $|G:C_G(g)|$.

Exercise 1.20. A p-group is a group in which the order of every element is a power of p. Prove: G is a finite p-group \iff $|G| = p^n$ for some n.

Exercise 1.21. (a) Every nontrivial finite p-group has nontrivial center. (Hint: partition the set $G \setminus Z(G)$ into conjugacy classes.) (b) Every finite p-group is nilpotent.

Exercise 1.22. For any subset $S \subset G$, we have $C_G(S) \triangleleft N_G(S)$.

Exercise 1.23. If |G| = 15 then |G| is cyclic.

09-30-2014

Exercise 1.24. Find a nonabelian group of order 21.

Exercise 1.25. If a Sylow p-subgroup is normal in the finite group G then it is characteristic in G.

Exercise 1.26. Let G be finite. All Sylow subgroups of G are normal $\iff G$ is the direct product of its Sylow subgroups $\iff G$ is nilpotent.

Exercise 1.27. (a) If G is not abelian then G/Z(G) is not cyclic.

(b) Corollary: If $|G| = p^2$ (p prime) then G is abelian.

Exercise 1.28. The mod p Heisenberg group H_p (upper triangular matrices over \mathbb{F}_p with 1s in the diagonal) has exponent p for all odd primes p.

Exercise 1.29. G has exponent $2 \implies G$ is abelian.

Exercise 1.30. Find a nonabelian group of order p^3 with exponent p^2 .

Exercise 1.31. The modulo 2 Heisenberg group H_2 is isomorphic to either the quaternion group Q_8 or the dihedral group D_4 (these being the only two nonabelian groups of order 8). Which one?

Exercise 1.32. Read about the alternating group A_n .

Exercise 1.33. (a) $H \leq S_n$ with $|S_n : H| = 2 \implies H = A_n$. (b) Corollary: A_n char S_n .

Exercise 1.34. $Z(S_n) = 1$ for $n \geq 3$.

Exercise 1.35. A_n is simple for $n \geq 5$ and solvable for $n \leq 4$.

Exercise 1.36. Out $(S_n) = 1$ for $n \neq 6$. Also $|\text{Out}(S_6)| = 2$.

Exercise 1.37. Let $S_n^{(2)}$ denote the image of S_n in $S_{\binom{n}{2}}$ under the induced action on pairs. Prove: for $n \geq 5$, the group $S_n^{(2)}$ is primitive.

Exercise 1.38. G is primitive and $N \triangleleft G$, $N \neq 1 \implies N$ is transitive.

Exercise 1.39. G is solvable and acts primitively on $\Omega \implies |\Omega| = p^k$ for some k and prime p.