Algorithms in Finite Groups

MATH 37500: László Babai Scribe: Ang Li

10/07/14

3 Automorphism groups, wreath product, regular permutation groups

3.1 Automorphism groups of Platonic solids and *n*-cubes. Wreath product.

Exercise 3.1. Let $G \leq \operatorname{Sym}(\Omega)$ be a transitive group. Prove: G is primitive if and only if the stabilizer G_x is a maximal subgroup.

Exercise 3.2. $S_k^{(2)} \leq S_{\binom{k}{2}}$ is primitive for $k \geq 5$.

Exercise 3.3. Petersen's graph is isomorphic to the complement of the line graph of K_5 .

Exercise 3.4. The automorphism group of Dodecahedron is not isomorphic to S_5 .

Exercise 3.5. Aut⁺(Dodecahedron) $\cong A_5$ and Aut(Dodecaheron) $\cong A_5 \times C_2$. Here Aut⁺ denotes the group of orientation preserving symmetries.

Exercise 3.6. (a) Those congruences (norm-preserving linear transformations) of \mathbb{R}^n which fix the origin form the orthogonal group O(n) consisting of the orthogonal matrices A defined by the equation $A^TA = I$. (b) Prove that the determinant of such a matrix is ± 1 . (c) The orientation preserving ("sense-preserving") transformations form the group SO(n) which consists of those $A \in O(n)$ with det(A) = 1. Prove: SO(n) is the unique subgroup of index 2 in O(n).

Exercise 3.7. (a) Prove: if $A \in SO(3)$ then A is a rotation. (b) Prove: if $A \in O(3) \setminus SO(3)$ then A is a "rotational reflection," i.e., a rotation followed by a reflection in an axis perpendicular to the axis of rotation. (c) Find a rotational reflection that causes the vertices of a regular tetrahedron to be permuted in a 4-cycle.

Exercise 3.8. Prove: $\operatorname{Aut}^+(cube) \cong S_4$ and $\operatorname{Aut}(cube) \cong S_4 \times C_2$.

10-07-2014

Exercise 3.9. Let X be a connected graph and Y the union of k disjoint copies of X. Then $\operatorname{Aut}(Y) = \operatorname{Aut}(X) \wr S_k$ where the wreath product acts in the imprimitive (union) action.

Exercise 3.10. Let Q_n denote the graph (1-skeleton) of the n-cube. So $V(Q_n) = \{0,1\}^n$ and two vertices are adjacent of their Hamming distance is 1. Prove: $\operatorname{Aut}(Q_n)$ includes \mathbb{Z}_2^n and $\mathbb{Z}_2^n \prec \operatorname{Aut}(Q_n)$.

Exercise 3.11. $\operatorname{Aut}(Q_n)/\mathbb{Z}_2^n \cong S_n$.

Exercise 3.12. Aut $(Q_n) \cong \mathbb{Z}_2^n \wr S_n$ (wreath product)

Exercise 3.13. Is $\mathbb{Z}(Q_n)$ primitive?

Exercise 3.14. If $A \leq \operatorname{Sym}(\Omega)$ is primitive and not of prime order and $B \leq \operatorname{Sym}(\Phi)$ is transitive then $A \wr B$ in product action on Ω^{Φ} is primitive.

3.2 Regular permutation groups, permutational isomorphism

Exercise 3.15. Let $G \leq \operatorname{Sym}(\Omega)$ and assume $x, y \in \Omega$ belong to the same orbit of G. Consider the set $G_{x \to y} := \{g : x^g = y\}$. Let $h \in G_{x \to y}$. Prove: $G_{x \to y} = G_x \cdot h = h \cdot G_y$.

Exercise 3.16. If x, y are in the same orbit of $G \leq \operatorname{Sym}(\Omega)$ then G_x and G_y are conjugate.

Exercise 3.17. The right translation ρ_g by $g \in G$ is the permutation of G defined by $\rho_g : x \mapsto xg$ $(x \in G)$. The left translation λ_g is defined by $\lambda_g : x \mapsto g^{-1}x$ $(x \in G)$. Let $R_G = \{\rho_g \mid g \in G\} \leq \operatorname{Sym}(G)$ denote the group of right translations of G; and $L(G) = \{\lambda_g \mid g \in G\} \leq \operatorname{Sym}(G)$ the group of left translations. Prove: $\rho : g \mapsto \rho_g$ is an isomorphism of G to R_G and $\lambda : G \mapsto \lambda_g$ is an isomorphism of G to G.

Exercise 3.18. $[R_G, L_G] = 1$, i.e., R_G and L_G centralize each other.

Exercise 3.19. $C_{\text{Sym}(G)}(R_G) = L_G \text{ and } C_{\text{Sym}(G)}(L_G) = R_G.$

Definition 3.20. A permutational isomorphism between the permutation groups $G \leq \operatorname{Sym}(\Omega)$ and $H \leq \operatorname{Sym}(\Phi)$ is a bijection $\alpha : \Omega \to \Phi$ such that $H = G^{\alpha} = \alpha^{-1}G\alpha$.

Exercise 3.21. L_G and R_G are permutationally isomorphic.

Definition 3.22. A permutation group $G \leq \operatorname{Sym}(\Omega)$ is semiregular if $(\forall x \in \Omega)(G_x = 1)$. We say that G is a regular permutation group if it is semiregular and transitive.

Exercise 3.23. If $G \leq S_n$ is regular then |G| = n.

Exercise 3.24. R_G and L_G are regular permutation groups.

Exercise 3.25. If G is a regular permutation group then G is permutationally isomorphic to R_G . (In particular, this will reprove that L_G and R_G are permutationally isomorphic.)

10-07-2014

Exercise 3.26. (a) If G is semiregular then $C_{\text{Sym}(\Omega)}(G)$ is transitive.

- (b) If G is transitive then $C_{\text{Sym}(\Omega)}(G)$ is semiregular.
- (c) If G is regular then $C_{\text{Sym}(\Omega)}(G)$ is regular.

Exercise 3.27. For any permutation group G, if $N \triangleleft G$ then the orbits of N form a G-invariant partition of Ω .

Corollary: If G is primitive and N is a non-trivial normal subgroup of G then N is transitive.

Exercise 3.28. Every transitive abelian group is regular.

Definition 3.29 (Equivalent permutation representations). Let $\varphi : G \to \operatorname{Sym}(\Phi)$ and $\psi : G \to \operatorname{Sym}(\Psi)$ be two permutation actions (permutation representations) of the group G. We say that φ and ψ are equivalent if there exists a bijection $\alpha : \Phi \to \Psi$ such that for all $g \in G$ we have $g^{\varphi}\alpha = \alpha g^{\psi}$.

Exercise 3.30. Given $H \leq G$, there exists a unique permutation action of G such that $G_x = H$. (Uniqueness is up to equivalence of permutation representations.)

Exercise 3.31. The kernel of this action is $Core(H) = \bigcap_{g \in G} H^g$.

Exercise 3.32. If M, N are normal subgroups in the group G and $M \cap N = 1$ then [M, N] = 1 (M and N centralize each other).