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5 Classification of Finite Simple Groups,

Structure Theorems for Primitive Groups

5.1 Finite Simple Group Types

Theorem 5.1. All finite simple groups fall under one of the following categories

• Zp for prime p.

• An for n ≥ 5

• Lie type simple groups

• Sporadic groups

5.2 Lie Type simple groups

These are projective matrix groups (groups acting on projective spaces over finite
fields, defined as quotients of certain matrix groups by their center, consisting of
scalar matrices).
They have two subtypes: classical and exceptional groups. Each of these falls into a
finite number of classes. There are 5 classes of classical groups: linear, symplectic,
unitary, and three types of orthogonal groups.

5.3 Classical Lie Type – Linear

Definition 5.2. We define the projective groups PSL(d, q). Let GL(d, q) be the
group of d× d invertible matrices over Fq. Let SL(d, q) := ker(det) / GL(d, q) be the
subgroup of matrices with determinant 1, where det : GL(d, q)→ Fq is the
determinant function. We define the projective group as the quotient of SL(d, q) by
its center:

PSL(d, q) = SL(d, q)/Z(SL(d, q)) (1)

Exercise 5.3. Z(SL(d, q)) = SL(d, q)
⋂
F×q · I
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Exercise 5.4. If F is any field (finite or infinite) and G ≤ F× is finite, then G is
cyclic.

Note 5.5. |Z(SL(d, q))| = gcd(d, q)

5.4 Classical Lie Type – Symplectic

Definition 5.6. A symplectic bilinear form is a nondegenerate alternating bilinear
form f : Fn × Fn → F satisfying (1) f(x, y) is bilinear, and (2)
(∀x ∈ Fn)(f(x, x) = 0). Notice that (2) implies that f(x, y) = −f(y, x) but the
backwards implication is not true for fields of characteristic 2.

Definition 5.7. A symplectic space V is a vector space with a symplectic form f .
We say x ⊥ y if f(x, y) = 0. We define S⊥ = {y : (∀s ∈ S)(y ⊥ s)} ≤ V . We say
that f is non-degenerate if its radical RadV = 0, where RadV = V ⊥.

Exercise 5.8. Show that the dimension of a nondegenerate symplectic space is
even.

Theorem 5.9 (Structure Theorem). If (V, f) is a nondegenerate symplectic space,
then V = V1 ⊥ . . . ⊥ Vk (orthogonal direct sum), where dimVi = 2 and Vi = 〈vi, wi〉
where (vi, wi) is a hyperbolic pair: f(vi, wi) = 1 (and therefore f(wi, vi) = −1).
Generally, a symplectic space (V, f) is given by V = RadV ⊥ W where W is a
nondegenerate.

Definition 5.10. Let Sp(V, f) := {A : f(Ax,Ay) = f(x, y)} be the group of
isometries of (V, f). Let PSp2n := Sp(V,F)/Z(Sp(V,F)), where V has dimension 2n.

5.5 Classical Lie Type - Orthogonal and Unitary

Exercise 5.11. Show that

1. If char(F) = p, then x 7→ xp is an endomorphism.

2. if char(F) = p and F is finite, then x 7→ xp is an automorphism.

3. Show that Aut(Fpk) = {x 7→ xp
i

: i ∈ [k]}.

Exercise 5.12. Show that Aut(R) = 1. Note that Aut(C) is enormous.

something about bilinear forms and isometries (???)

Each class of classical simple groups is parametrized by a prime power (order of the
field of definition) and a dimension.

5.6 Exceptional groups

Each class of exceptional simple groups is parametrized by a prime power (order of
the field of definition). (The dimension is fixed in each class.)
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5.7 Landazuri-Seitz

Theorem 5.13. Let G be a finite simple group of Lie type defined by its action on
PG(d− 1, q) (d− 1-dimensional projective space over Fq where q = pk). Consider a
nontrivial (and therefore faithful) representation G→ GL(V ) in cross characteristic
(over a field of characteristic other than p). Then dim(V ) & qcd for some absolute
constant c > 0.

5.8 Structure Theorems for Primitive Groups

Theorem 5.14 (Cameron 1981). Let G ≤ Sn be a permutation group with order
|G| > 2nε and n sufficiently large as a function of ε. Then there exist constants r, s
such that

A
(r)
k × . . .× A

(r)
k ≤ G ≤ S

(r)
k o Ss (2)

where n =
(
k
r

)s
and the wreath product acts in its product action. Moreover the

induced action G→ Ss must be transitive.

Note that the groups described in the theorem have order exp(Õ(n1/rs).
As a first step toward proving Cameron’s theorem (Thm. 5.14), we make the
following observations.

Exercise 5.15. Suppose that G ≤ Sn is primitive. We consider the minimal normal
subgroups. One of the following must be hold:

1. G has at most two minimal normal subgroups. If it has two, then both of
those are regular and they are each others’ centralizer.

2. If G has a regular minimal normal subgroup, then, by a previous exercise,
|G| < n1+logn. Note that this includes the case when G has an abelian
minimal normal subgroup, and also the case when G has two minimal normal
subgroups.

3. In the remaining cases, G has a unique minimal normal subgroup N and N is
nonabelian. Therefore (N being characteristically simple) it follows that
N ∼= T1 × . . .× Tk where T ∼= Ti are isomorphic nonabelian simple groups.
Infer that G ≤ Aut(T ) o Sk.

Exercise 5.16. Show that if G ≤ Sn has a regular normal subgroup, then
|G| < n1+logn. (From last time. Abelian case proved in class.)

Exercise 5.17. Suppose that G ≤ Sn where |Sn : G| < 2n. Show that G is
intransitive.
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