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6 Large primitive permutation groups, coherent
configurations

Exercise 6.1 (from previous homeworks). N <G < S,,, N regular —
|G| < n1+10g2 n

Proof. G — Aut(N) by conjugation, with kernel Cg(N).

N is regular = Cg(N) < Cs,(N), which is regular = |Cg(N)| < n.
Therefore, |G| < n| Aut(N)].

Say N is generated by d elements, (S) = N, |S| = d. Then for f € Aut(N), f is
determined by f|s, so | Aut(N)| < #{S — N} = n?. The proof is completed by the
following exercise. m

Exercise 6.2. If |G| = n, every minimal set of generators has at most log, n elements.

6.1 Large primitive permutation groups

Cameron’s classification of large primitive groups (1981) heavily depends on Classifi-
cation of Finite Simple Groups (CFSG).

Definition 6.3. Socle of a group = product of the minimal normal subgroups.
e The “giants”: S,,, A,.
Next largest: ~ nv™ Sp 1Sy, n = k?

.« mnVE g0 (.

2

exp(O(n'/?))

...exp(O(n*/*)): a finite number of groups for each k; the socle is a product of
alternating groups.

Elementary result:
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Theorem 6.4 (Bochert 1892). If G < S, not giant, primitive, then |S, : G| >
()1, then |G| < exp(%£Inn).

Theorem 6.5 (Praeger-Saxl 1980). |G| < 4™ for all n (not just sufficiently large n)
(Uses elementary group theory building on Wielandt 1954)

Theorem 6.6 (Babai 1981). If G is uniprimitive (that is, primitive and not doubly-
transitive), then |G| < exp(4y/nlog®n) (pure graph theory, no groups involved)

Theorem 6.7 (Xiaorai Sun, John Wilmes 2014). If G is uniprimitive, |G| < exp(O(n'/?))
with the known exceptions (again pure graph theory)

Theorem 6.8. (follows from CFSG) If G is not giant, is doubly transitive: |G| <
nitloen  This is tight: consider AGL(d,?2).

Theorem 6.9 (Burnside). If G doubly-transitive, Nmin<{G, then either N is abelian
(“affine case”) or N is simple. G < Aut(N).

All nonaffine doubly-transitive groups are known (Cartis-Kantor-Seitz 1970s).
Elementary results:

Theorem 6.10 (Babai 1982). Doubly-transitive, not giant = |G| < exp(exp(y/logn)) <
expn® (by elementary combinatorics, using basic concepts of permutation groups plus

Wielandt)
Theorem 6.11 (Pyber 1989). |G| < n'8°" (elementary combinatorics, uses a little

bit of group theory, uses Wielandt). By even more elementary means, |G| < nlog’n.

6.2 Coherent configurations

Definition 6.12. A configuration X = (; Ry, ..., R,_1) of rank r consists of a par-
tition QA x Q= Ry U Ry U --- U R,_; such that

(i) diag(Q2) = Ry Y --- U R, 1 a subpartition, and

(i) (Vi)(3j)(R;' = R;), where the superscript —1 indicates switching the order of
the pairs.

Write the color ¢(x,y) =i if (z,y) € R;. The rank is rank(X) = r. A configuration
is a coherent configuration if furthermore

(iii) there exist parameters pfj, 0<i,j,k,<r—1, such that
(V(z,y) € Ri)([{z | e(x, 2) = i, ¢(z,y) = 3} = pfj)-

Definition 6.13. “Group case”: Let G < Sym(€2).
Define X(G) = (€2; orbits of G on Q x Q).

Exercise 6.14. This is a coherent configuration.
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Exercise 6.15. G < Aut(X(G)).

Definition 6.16. X = (V, F) is a strongly reqular graph (SRG) with parameters
(n7 k? /\7 :u) if

e n= |V|’
o k=degx forallz eV,
e every pair of adjacent vertices has A common neighbors, and

e every pair of nonadjacent vertices has ¢ common neighbors.

Exercise 6.17. If X is SRG, disconnected, then G =r- K, = K, U --- U K,. It has
parameters (rs,s — 1,s — 2,0).

Exercise 6.18. If X is SRG, then X is SRG.
Definition 6.19. A graph X = (V, E) gives rise to a configuration X(X) = (V;diag(V), E, E).
Exercise 6.20. X(X) is coherent <= X SRG.

Definition 6.21. A Latin square is an n X n matrix in which every row is a permu-
tation of {1,...,n}, and every column is also a permutation of {1,... ,n}.

Definition 6.22. Let L = (¢;;) be a Latin square. The point graph of L is a graph
with n? vertices (i,7), 1 <i,j <n, with (4,7) ~ (¢, j') if i =4' or j = j' or l;; = lyjr.

Exercise 6.23. These graphs are SRG (find the parameters).

Definition 6.24. An isomorphism of Latin squares is allowed to permute the rows
amongst themselves, permute columns amongst themselves, permute the symbols that
are used as labels, swap rows with columns (that is, take the transpose), swap rows
with symbols, or swap columns with symbols. There are (n!)?3! isomorphisms from
a given Latin square, corresponding to elements of the group S, ! Ss.

Exercise 6.25. (a) If k£ > 4 then (a) all automorphisms of Point(L) are induced by
Aut(L); (b) all isomorphisms between point graphs of Latin squares are induced by
isomorphisms of the corresponding Laton squares. In particular, one can canonically
reconstruct a Latin square from its point graph.

Theorem 6.26 (Cameron, Babai 1981). Almost all Latin squares have no automor-
phisms.

Definition 6.27. A configuration is a homogeneous configuration if Ry = diag(€2).
Exercise 6.28. X(G) homogeneous <= G transitive.

Notation 6.29. c(r) = c¢(z,7). deg] (z) denotes the out-degree of vertex x in color
i, and deg; (z) the in-degree.
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Exercise 6.30. c(x,y) determines ¢(x) and c(y).

Exercise 6.31. Let X be a coherent configuration. If ¢(x) = c(y) then (Vi)(deg; (z) =
deg/"(y)) and (Vi)(deg; (v) = deg; (y)).
Exercise 6.32. If ¢(x) # c(y), then Vi deg] (z) deg; (y) = 0.

Definition 6.33. The digraph (V, E) is Eulerian if (Vo € V)(deg” (z) = deg™ (z),
where deg® denotes out-degree and deg™ denotes in-degree.

Exercise 6.34. If X is a homogeneous coherent configuration, then (Vi)(deg; =
deg; ), i.e. (Vi)((€2, R;) is Eulerian).

Definition 6.35. Let (V, E) be a digraph. Weakly connected: (V,E U E~1) is con-
nected (that is, the underlying undirected graph is connected). Strongly connected:
(Vz,y)(3x — - — y a walk).

Exercise 6.36. If an Eulerian digraph is weakly connected then it is strongly con-
nected.

Definition 6.37. A primitive coherent configuration is a configuration that is
(1) homogeneous,
(2) (Vi > 1)((2, R;) is connected as a directed graph).
Theorem 6.38. The permutation group G is primitive <= the coherent configuration
X(G) is primitive.
G < Aut(X(G)).

(i) If G is primitive, then X(G) is primitive (connected components of (V, R;) form
a system of imprimitivity).

(i) If X(G) is primitive, then G is primitive (an edge within a block cannot be sent
to a cross-block edge).

Exercise 6.39. If X is coherent, x,y € Q, then the number of x — y walks (note:
walks are not required to be self-avoiding) of a given length k& and color composition
i1,...,1 depends only on ¢(z,y) and the list (iy,...,d) of colors.

Exercise 6.40. If X is coherent, then (a) all weak components (components of the
underlying undirected graph) of color ¢ have the same number of vertices and same
diameter. (b) However, they don’t need to be isomorphic. Construct a homo-
geneous coherent configuration in which one of the color classes has nonisomorphic
components.

Exercise 6.41. Let X primitive coherent configuration, R; = R; U R7'If (9, R;) =
Xi is not complete, then diam (XZ> = 2.

Exercise 6.42. |Aut(Latin Square)| < n'*1°62" (or something similar).
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