Algorithms in Finite Groups MATH 37500: László Babai Scribe: Angela Wu 10/21/14 ## 7 Exercise Regarding Coherent Configurations Consider the action of $G \leq \operatorname{Sym}(\Omega)$ on $\Omega \times \Omega$. **Definition 7.1.** A configuration $\mathfrak{X}(\Omega, R_0, \ldots, R_{r-1})$ is given by a partition $\Omega \times \Omega = R_0 \sqcup \ldots \sqcup R_{r-1}$ satisfying (1) $\operatorname{diag}(\Omega) = R_0 \sqcup \ldots \sqcup R_{r_0}$, and (2) $(\forall i)(\exists j)(R_i^{-1} = R_j)$. We call $\operatorname{rank}(\mathfrak{X}) := r$ the rank of \mathfrak{X} . We say the color c(x, y) of the pair (x, y) is c(x, y) = i if $(x, y) \in R_i$. **Definition 7.2.** A configuration is *coherent* if in addition, for any $0 \le i, j, k \le r - 1$, there exists p_{ij}^k such that for all pairs $(x, y) \in R_k$ we have $\#\{z : c(x, z) = i, c(z, y) = j\} = p_{ij}^k$. **Definition 7.3.** A digraph (V, E) is weakly connected if $(V, E \cup E^{-1})$ is connected. A digraph (V, E) is strongly connected if, for any $u, v \in V$, there is a directed path from u to v. The indegree $\deg^-(v)$ of a vertex $v \in V$ is the number of incoming edges, and the outdegree $\deg^+(v)$ of a vertex $v \in V$ is the number of outgoing edges. **Exercise 7.4.** Suppose that \mathfrak{X} is a coherent configuration. We write c(x) = c(x, x). We prove the following series of exercises: - 1. If c(x) = c(y), then for any i, $\deg_i^{+/-}(x) = \deg_i^{+/-}(y)$. - 2. Given a string of colors $\vec{C} \in [r]^{\ell}$ of length ℓ and vertices $u, v \in V$, define $\#u \xrightarrow{C} v$ to be the number of (possibly repeating) walks from u to v via ℓ steps of colors in the order prescribed by \vec{w} . Show that $\#u \xrightarrow{C} v = f(c(u, v), \vec{C})$ is a function depending only on \vec{C} and the color of c(u, v). - 3. Show that for any i, all the weak components of (Ω, R_i) have the same size and diameter. - 4. Find a coherent configuration \mathfrak{X} such that, for some i, (Ω, R_i) has two non-isomorphic weak components. 10-21-2014 *Proof.* 1. Consider $x, y \in \Omega$ such that c(x) = c(y) = k. For any i, $\deg_i^+(x) = p_{i,i-1}^k = \deg_i^+(y)$ and $\deg_i^-(x) = p_{i-1,i}^k = \deg_i^-(y)$. 2. We define $f(c_0, \vec{C})$ to be the number of walks from u to v, vertices satisfying $c(u, v) = c_0$, via colors in the order prescribed by \vec{C} . We show that $f(c_0, \vec{C})$ is well defined, by induction on $\ell = |\vec{C}|$. The claim is true for $\ell = 1$ and $\ell = 2$ by the definition of coherent configuration. Let $u, v \in \Omega$, let $c_0 = c(u, v)$, and let $\vec{C} = (c_1, \dots, c_\ell) \in [r]^{\ell}$. We count: $$\#u \xrightarrow{C} v = \sum_{j \in [r]} f(j, c_1, \dots c_{\ell-1}) \cdot p_{j, c_{\ell}}^{c_0}, \tag{1}$$ which is independent of the choice of vertices u, v. 3. <u>Diameter:</u> Suppose that C_1 and C_2 are two distinct weak components of (Ω, R_i) with diameter diam₁ and diam₂ respectively. Suppose that $u, v \in C_1$ satisfy dist_i $(u, v) = \text{diam}_1$. Let k = c(u, v). Then, $f(k, i^{\pm 1} \dots i^{\pm 1}) = 0$ (with diam₁ -1 i's) for any choice of signs. But, $f(k, \pm 1 \dots i^{\pm 1}) \geq 1$ (diam₁ i's) for some choice of signs. Thus, the shortest i-colored path from u to v has length exactly diam₁. By exercise 1., we find that there is $u' \in C_2$ such that c(u') = c(u). Since $\deg_k^+(u') = \deg_k^+(u)$, we find that there also exists v' such that d(u', v') = k. By exercise 2. and the discussion above, we find that the minimum length of an i-colored path from u' to v' is exactly diam₁. So, $u', v' \in C_2$, and diam₂ \geq diam₁. The same argument shows that diam₁ \geq diam₂, so they are equal. Size: Let C_1 and C_2 be two nonempty connected components of (Ω, R_i) . Pick some $x \in C_1$ and some $y \in C_2$ such that c(y) = c(x) (possible by exercise 1). Define $B_i(x, n)$ to be the ball centered at x of radius n on (Ω, R_i) . Notice that $|B_i(x, n)|$ is determined entirely by $f(c(x), \vec{C})$ for $\vec{C} \in [c]^*$. Since c(y) = c(x), $|B_i(y, n)| = |B_i(x, n)|$ for all i. Thus, the size of the i-component containing x, $|\bigcup_n B_i(x, n)|$, and the size of the i-component containing y, $|\bigcup_n B_i(x, n)|$, must be equal. 4. Consider a Latin square \mathcal{L} , with corresponding graph $X(\mathcal{L}) = (V, E)$ defined by $V = [k]^2$ and $(i, j) \sim (i', j')$ if i = i', j = j' or $\ell(i, j) = \ell(i', j')$. We note that $X(\mathcal{L})$ must be strongly regular with parameters $(k^2, 3(k-1), k, 6)$. Let $X_1 = (V_1, E_1)$ and $X_2 = (V_2, E_2)$ be the graphs for two nonisomorphic Latin squares. Define $\mathcal{X} = (\Omega, R_1, R_2, R_3, R_4)$ be the homogeneous coherent configuration given by $\Omega = V_1 \sqcup V_2$, $R_1 = E_1 \sqcup E_2$, $R_2 = \overline{E_1} \sqcup \overline{E_2}$, and $R_3 = V_1 \times V_2 \sqcup V_2 \times V_1$. Then, the components of the graph (Ω, R_1) correspond exactly to X_1 and X_2 , which are non-isomorphic. Other examples of strongly regular graphs include: 10-21-2014 - $L(K_v)$, with parameters $\binom{v}{2}, 2(v-1), v-2, 4$ and Aut $\cong S_v$. - $L(K_{v,v})$, with parameters $(v^2, 2v 2, v 2, 2)$ and Aut $\cong S_v \wr S_2$. In particular, the above graphs give examples of strongly regular graphs with large automorphism groups. **Do 7.5.** Show that if a strongly regular graph X is disconnected, then $X = r \cdot K_s$, with automorphism group $S_s \wr S_r$. **Exercise 7.6.** Prove: If the line graph L(X) of some graph X is strongly regular then either L(X) is disconnected (so L(X) is the union of complete graphs of equal size, so X is the union of star graphs and possibly triangles) or X is a complete graph, or a complete bipartite graph with equal parts, or the pentagon. **Theorem** (Babai 1981). If \mathfrak{X} is a coherent configuration of rank ≥ 3 with n vertices then $|\operatorname{Aut}(\mathfrak{X})| \leq \exp(4\sqrt{n}\ln^2 n)$. See the proof in a separate document.