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László Babai∗

May 1, 2011

Abstract

These notes describe the author’s elementary graph theoretic proof of the nearly tight
exp(4

√
n ln2 n) bound on the order of primitive, not doubly transitive permutation groups

(Ann. Math., 1981 ). The exposition incorporates a lemma by V. N. Zemlyachenko that
simplifies the proof.

The central concept in the proof is primitive coherent configurations, a combinatorial re-
laxation of the action of primitive permutation groups. The exposition follows the authors’
2003 REU lecture; simple observations are listed as “exercises.”

1 Large primitive groups

For large n, the largest four primitive permutation groups are Sn and An, of order about n!,
and S(2)

k (for n =
(
k
2

)
) and Sk oS2 (for n = k2), of order about exp(c

√
n lnn). The classification

of finite simple groups allows one to show that these are the largest and even to list the largest
down to size about exp(ln2 n) (Cameron [4], cf. Maróti [5]). We can do reasonably well with
elementary means.

Theorem 1.1. Assume G ≤ Sn, An 6≤ G, and G is primitive.

1. (Bochert, 1889 [3]) |G| ≤ n!
(n+1)/2)! ≈ e

n
2

logn.

2. (Wielandt, 1934 [8], Praeger-Saxl, 1980 [7]) |G| < 4n (using nontrivial elementary group
theory)

3. (Babai, 1981 [1]) If G is not doubly transitive then |G| < exp(4
√
n log2 n) (using graph

theory and a simple probabilistic argument).
∗Based on a 2003 REU lecture; scribe: Tom Hayes. Revised: LB, May 2011.
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4. (Babai, 1982 [2] If G is doubly transitive then |G| < exp exp c
√

log n (using elementary
group theory and a simple probabilistic argument)

5. (Pyber, 1993 [6])If G is doubly transitive then |G| < exp c log3 n (using elementary group
theory and the probabilistic argument of [2]) and |G| < exp c log2 n (using additionally
an elementary group theoretic result of Wielandt [8])

Exercise 1.2. Doubly transitive implies primitive.

The following theorem is proved using the classification of finite simple groups; one can get
close by elementary means.

Theorem 1.3. If G ≤ Sn, G 6≥ An is doubly transitive then |G| < n1+log2 n.

Exercise 1.4. Verify that this bound is essentially tight for PSL(d, q) and AGL(d, q), acting
on the corresponding projective and affine spaces, resp., where q is fixed and d→∞.

Remarks about symmetry and regularity: symmerty conditions are given in terms of au-
tomorphisms; regularity conditions in terms of numerical parameters. Symmetry condition
imply regularity conditions (e. g., vertex-transitivity is a symmetry condition, which implies
that the graph is regular, a regularity condition). The converse is seldom true. We shall define
regularity conditions on a family of edge-colored digraphs which capture some combinatorial
consequences of primitive group action. Using this translation, we shall prove a combinatorial
result which implies a nearly optimal upper bound on the order of uniprimitive (primitive but
not doubly transitive) permutation groups.

Picture of D6. R0 = ∆ = {(x, x) | x ∈ Ω}, diagonal. Ω× Ω = R0 ∪R1 ∪ · · · ∪Rr−1. r =#
colors = # orbits of G on Ω×Ω. D6 has rank 4, r = 4. In this case, all orbitals are self-paired.

Definition 1.5. An orbital Γ of a permutation group G ≤ Sym(Ω) is an orbit of G on the set
of ordered pairs (Γ ⊂ Ω × Ω). Γ is self-paired when Γ = Γ−1 (i. e., for (x, y) ∈ Γ there exists
σ ∈ G such that xσ = y and yσ = x). The rank r of a permutation group is the number of its
orbitals.

Exercise 1.6. If G is doubly transitive, then rk(G) = 2. What do the two classes correspond
to?

Definition 1.7. COHERENT CONFIGURATION of rank r:
X = (Ω;R0, . . . , Rr−1), Ri ⊆ Ω× Ω.
Ω× Ω = R0∪̇ . . . ∪̇Rr−1.
Xi = (Ω, Ri), i’th color digraph, called a constituent digraph. The color of a pair x, y is defined
as c(x, y) = i if (x, y) ∈ Ri.
To be coherent, the following 3 axioms must be satisfied:

A1: The diagonal is ∆ = R0∪̇ . . . ∪̇Ri0−1. Equivalently, c(x, x) = c(y, z)⇒ y = z.
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A2: (∀i)(∃j)(Rj = R−1
i ). Terminology: Ri is self-paired if Ri = R−1

i , i. e., Xi is undirected.

A3: (∃pi,j,k)(∀(x, y) ∈ Ri)(#{z | c(x, z) = j, c(z, y) = k} = pi,j,k)

Definition 1.8. For G ≤ Sym(Ω), X(G) := (Ω; orbitals). We refer to these as “the group
case.”

Exercise 1.9. X(G) is a coherent configuration.

Exercise 1.10. G ≤ Aut(X(G)), the group of color-preserving permutations. π ∈ Aut(X) if
(∀x, y)(c(x, y) = c(xπ, yπ))

Remark 1.11. There exist coherent configurations without a group. In fact, there are expo-
nentially many rank-3 coherent configurations with no automorphisms.

Well, we always lose in translation. The question is how much.

Exercise 1.12. The number of x→ · · · → y walks of a given color-composition only depends
on c(x, y). E. g., how many walks from x to y of length 4 are colored red, blue, purple, blue
(in order)?

Definition 1.13. X is homogeneous if R0 = ∆ (i. e., (∀x, y)(c(x, x) = c(y, y))).

Exercise 1.14. X(G) is homogeneous ⇐⇒ G is transitive.

Exercise 1.15. If X is homogeneous, then every weak component of each Xi is strongly
connected.

Exercise 1.16. If X is homogeneous, then (∀x)(∀i)(in-degreei(x) = out-degreei(x) = ρi (ρi
does not depend on x). So Xi is Eulerian, and indeed is regular.

By the way,
∑r−1

i=0 ρi = n, since every vertex is connected to every other (including itself)
in the graph ∪Xi, whose edge set contains all n2 ordered pairs.

Definition 1.17. X is a primitive coherent configuration if X is homogeneous and ALL con-
stituent digraphs Xi, i ≥ 1 are connected.

Exercise 1.18. X(G) is primitive ⇐⇒ G is primitive. (DO!!!)

Definition 1.19. X is uniprimitive coherent configuration if X is primitive and rank ≥ 3.

Exercise 1.20. X is uniprimitive⇐⇒ G is uniprimitive (primitive but not doubly transitive).

G ≤ Sym(Ω), Ψ ⊆ Ω. Look at the pointwise stabilizer, GΨ, =
⋂
x∈ΨGx. If GΨ = {1}, then

|G| ≤ n|Ψ|, in fact |G| ≤ n(n− 1) . . . (n− |Ψ|+ 1). Call such a Ψ a “base” of G.

We shall prove, using only elementary graph theoretic arguments, that

Theorem 1.21. If G is uniprimitive, then |G| < exp(4
√
n(lnn)2).
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Lemma 1.22. If G is uniprimitive, then (∃Ψ ⊆ Ω)(|Ψ| ≤ 4
√
n lnn and GΨ = {1}).

Examples: How large is the smallest base for various classes of permutation groups?

Definition 1.23. z distinguishes x and y if c(x, z) 6= c(y, z). D(x, y) = {z | c(x, z) 6= c(y, z)}
is the distinguishing set for x, y.

Exercise 1.24. If X = X(G) and z ∈ D(x, y), then x, y are not in the same orbit of Gz.
(Obvious, because the group preserves the colors.)

Definition 1.25. A distinguishing set of X is any set Ψ ⊆ Ω such that (∀x 6= y)(Ψ∩D(x, y) 6=
∅). In other words, for every pair x, y, Ψ contains an element which distinguishes them.

Exercise 1.26. For X = X(G), if Ψ is a distinguishing set, then Ψ is a base for G.

Theorem 1.21 will follow from the following result.

Theorem 1.27. If X is a uniprimitive coherent configuration, then there exists a distinguishing
set Ψ such that |Ψ| < 4

√
n lnn.

This will be an immediate consequence of the following. From now on, let us always assume
X is a uniprimitive coherent configuration.

Theorem 1.28 (Main technical theorem). For every x, y, |D(x, y)| ≥
√
n/2.

Proof: [Main technical theorem ⇒ Theorem 1.27]. Pick u1, . . . , um at random, and hope that
we picked enough to hit each D(x, y).

Pr(D(x, y) not hit) =
(

1− |D(x, y)|
n

)m
≤ exp

(
−|D(x, y)|m

n

)
.

Hence, by the Union Bound,

Pr((∃x, y)(D(x, y) not hit)) <

(
n

2

)
exp

(
−Dminm

n

)
< exp

(
−Dminm

n
+ 2 lnn

)
,

where Dmin = minx 6=y |D(x, y)|.

For this, it is sufficient to show

exp
(
Dminm

n
+ 2 lnn

)
≤ 1
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or equivalently
Dminm

n
+ 2 lnn ≤ 0

which follows from
m ≥ 2n lnn

Dmin
≤ 4
√
n ln(n) =: m.

The last inequality used the Main technical theorem, which gives a lower bound on Dmin.

2 Min size of distinguishing sets

We spend the rest of this class with proving the Main technical theorem above.

Exercise 2.1. |D(x, y)| depends only on c(x, y).

Notation 2.2. Let D(i) := |D(x, y)|, where i = c(x, y). Xi = (Ω;Ri). Let X ′i = (Ω;Ri∪R−1
i )

be the corresponding undirected graph.

Lemma 2.3. For i ≥ 1, if X ′i is not the complete graph, then diam(X ′i) = 2.

Proof: There exist x, y at distance 2 in X ′i, because there exist x, z not adjacent in X ′i, but
X ′i is connected by primitivity, and so the third vertex of any minimal x, z-path is at distance
2 from x.

Now take any u, v ∈ Ω, not adjacent in X ′i. Need to show: dist
X′i

(u, v) ≥ 2. Need to show:

u, v have a common neighbor in X ′i. c(u, v) ∈ {i, i−1}. Implies # common neighbors of u, v in
X ′i is the same as for x, y.

Exercise 2.4. If X is a regular graph of degree ρ and diameter = 2, then ρ ≥
√
n− 1.

Exercise+ 2.5. ρ =
√
n− 1 under the above conditions implies ρ ∈ {2, 3, 7, 57}. Hint. Figure

out a connection to girth. This exercise is only for students who took the first half of this
course.

Lemma 2.6. (∀i ≥ 1)(ρi ≤ n− 1−
√
n− 1).

Proof: If X ′i is the complete graph, then ρi = (n − 1)/2 and we are done. Otherwise, use
Lemma 2.3 and Exercise 2.4.

Notation 2.7. We shal consider the average distinguishing number

D =

∑
x 6=y |D(x, y)|
n(n− 1)

.

Also, let ρmax := maxi ρi.
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Lemma 2.8. D ≥ n− ρmax ≥
√
n− 1 + 1 ∼

√
n.

Proof: Count the number of triples (x, y, z) such that z /∈ D(x, y). This means c(x, z) =
c(y, z) = ρi for some i. This is

n−D =
∑r−1

i=1 ρi(ρi − 1)
n− 1

≤ ρmax

∑r−1
i=1 (ρi − 1)
n− 1

< ρmax.

Lemma 2.9. D(i) ≤ distX′j (i)D(j).

Proof: Let x0, x1, . . . , xd be a in X ′j path where c(x0, xd) = i. D(x0, xd) ⊆ ∪di=1D(xi−1, xi).
The size on the left side is D(i); all stes on the right side have size D(j).

Notation 2.10. diam(i) := diam(X ′i).

Corollary 2.11. D(j) ≥ D/diam(j).

Proof: Need: D ≤ diam(j)D(j). Pick i such that D(i) ≥ D. Then distX′j (i) ≤ diam(X ′j) =
diam(j).

Corollary 2.12. If diam(i) = 2 then D(i) &
√
n/2.

Lemma 2.13 (Zemlyachenko). If diam(i) ≥ 3 then D(i) ≥ ρi/3.

Proof: Let x, y, z, w be a shortest path from z to w in X ′i. Let X ′i(x) = { neighbors of x in
color i }.

Claim 2.14. X ′i(x) ⊆ D(x,w) and D(i) ≥ |D(x,w)|/3. The Lemma is immediate from the
following claim:

The claim is easy: if some X ′i-neighbor u of x did not distinguish x from w then c(u,w) =
c(u, x) = i±, so x− u−w would be an X ′i-path of length 2, contradicting the assumption that
disti(x,w) = 3. Now |D(x,w)| ≤ 3D(i) by Lemma 2.9.

Exercise 2.15. Suppose there exists an edge of color h between Xi(x) and Xj(x). Then there
exist at least max(ρi, ρj) such edges.

Lemma 2.16. (∀h 6= 0)(∀x)(x distinguishes at least n− 1 pairs of color h).

Proof: Let us construct a graph H using the set V = {0, 1, . . . , r− 1} of colors as vertex set.
Let w(i, j) be the number of edges of color h or h−1 from Xi(x) to Xj(x). Put an edge between
i and j if w(i, j) 6= 0; assign weight w(i, j) to this edge. It follows from Exerciseconn-ex that
if there is an {i, j} edge then w(i, j) ≥ max(ρi, ρj).
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H is a connected graph. This follows from the primitivity of X (why?). Let T be a spanning
tree of H. Let us orient T away from vertex (color) 0. x distinguishes ≥ τ edges of color h,
where τ := total weight of edges of T .

τ =
∑
i→j

w(i, j) ≥
∑
i→j

ρj =
r−1∑
i=1

ρj = n− 1.

Corollary 2.17. D(i) ≥ (n− 1)/ρi.

Proof: Count the triples N = |{(x, y, z) | c(x, y) = i, z ∈ D(x, y)}| in two different ways.

Count by (x, y). The number of pairs (x, y) such that c(x, y) = i is nρi. For each such pair,
there are D(i) choices for z. Thus,

N = nρiD(i).

Now count by z. There are n choices for z. Given z, there are at least n − 1 pairs (x, y)
distinguished by z. Thus

N = nρiD(i) ≥ n(n− 1),

and so
ρiD(i) ≥ n− 1.

Corollary 2.18. If diam(i) ≥ 3 then D(i) &
√
n/3.

Proof: Multiplying the expressions for D(i) from Lemma 2.13 and Corollary 2.17, we get

D(i)2 ≥ ρi
3
· n− 1

ρi
=
n− 1

3
.

Thus

D(i) ≥
√
n− 1

3
∼
√
n√
3
.

This result, combined with Corollary 2.12, completes the proof of the Main Theorem.

This proof is based on L. Babai: “On the order of uniprimitive permutation groups,” Annals
of Math. 113 (1981), 553–568, as simplified by N. Zemlyachenko a year later.

Conjecture 2.19. For uniprimitive coherent configurations, Dmin = Ω(n− ρmax). (Note that
this is true for the average rather than the minimum size of distinguishing sets by Lemma 2.8.)

Another open question:

Conjecture 2.20. For primitive coherent configurations of rank r ≥ 4, Dmin = Ω(n1−1/(r−1))).
Or at least Dmin = Ω(n1−f(r)), where f(r)→ 0.

Note that the first statement is true for r = 2.
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