Primitive coherent configurations:
On the order of uniprimitive permutation groups

Léaszlo Babai*

May 1, 2011

Abstract

These notes describe the author’s elementary graph theoretic proof of the nearly tight
exp(4y/n In® n) bound on the order of primitive, not doubly transitive permutation groups
(Ann. Math., 1981). The exposition incorporates a lemma by V. N. Zemlyachenko that
simplifies the proof.

The central concept in the proof is primitive coherent configurations, a combinatorial re-
laxation of the action of primitive permutation groups. The exposition follows the authors’
2003 REU lecture; simple observations are listed as “exercises.”

1 Large primitive groups

For large n, the largest four primitive permutation groups are S,, and A,, of order about n!,
and S](f) (for n = (S)) and Sj 192 (for n = k?), of order about exp(cy/nInn). The classification
of finite simple groups allows one to show that these are the largest and even to list the largest
down to size about exp(In?n) (Cameron [4], cf. Maréti [5]). We can do reasonably well with
elementary means.

Theorem 1.1. Assume G < S,,, A, £ G, and G is primitive.

1. (Bochert, 1889 [3]) |G| < (714_?7;/2), A~ ez logn,

2. (Wielandt, 1934 [8], Praeger-Sazl, 1980 [7]) |G| < 4™ (using nontrivial elementary group
theory)

3. (Babai, 1981 [1]) If G is not doubly transitive then |G| < exp(4y/nlog?n) (using graph
theory and a simple probabilistic argument).
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4. (Babai, 1982 [2] If G is doubly transitive then |G| < expexpcy/logn (using elementary
group theory and a simple probabilistic argument)

5. (Pyber, 1993 [6])If G is doubly transitive then |G| < exp clog®n (using elementary group
theory and the probabilistic argument of [2]) and |G| < expclog®n (using additionally
an elementary group theoretic result of Wielandt [8])

Exercise 1.2. Doubly transitive implies primitive.

The following theorem is proved using the classification of finite simple groups; one can get
close by elementary means.

Theorem 1.3. If G < S,,, G # A, is doubly transitive then |G| < n'Tlos2n,

Exercise 1.4. Verify that this bound is essentially tight for PSL(d, ¢) and AGL(d, q), acting
on the corresponding projective and affine spaces, resp., where ¢ is fixed and d — oo.

Remarks about symmetry and regularity: symmerty conditions are given in terms of au-
tomorphisms; regularity conditions in terms of numerical parameters. Symmetry condition
imply regularity conditions (e.g., vertex-transitivity is a symmetry condition, which implies
that the graph is regular, a regularity condition). The converse is seldom true. We shall define
regularity conditions on a family of edge-colored digraphs which capture some combinatorial
consequences of primitive group action. Using this translation, we shall prove a combinatorial
result which implies a nearly optimal upper bound on the order of uniprimitive (primitive but
not doubly transitive) permutation groups.

Picture of Dg. Ry = A = {(z,z) | z € Q}, diagonal. Q x Q=RyUR U ---UR,_1. 7 =#
colors = # orbits of G on 2 x . Dg has rank 4, r = 4. In this case, all orbitals are self-paired.

Definition 1.5. An orbital ' of a permutation group G < Sym(€2) is an orbit of G on the set
of ordered pairs (I' € Q x Q). T is self-paired when I' = I'"! (i.e., for (z,y) € T there exists
o € G such that 7 = y and y? = x). The rank r of a permutation group is the number of its
orbitals.

Exercise 1.6. If G is doubly transitive, then rk(G) = 2. What do the two classes correspond
to?

Definition 1.7. COHERENT CONFIGURATION of rank r:

X=(%Ro,...,R—1), R CQxO.

Q x Q:R()U...L'Jerl.

Xi = (Q, R;), i’th color digraph, called a constituent digraph. The color of a pair z,y is defined
as c(x,y) =i if (z,y) € R;.

To be coherent, the following 3 axioms must be satisfied:

Al: The diagonal is A = RoU...UR;,_1. Equivalently, c(z,z) = c(y,2) = y = 2.



A2: (Vi)(3)(R; = R;'). Terminology: R; is self-paired if R; = R; ', i.e., X; is undirected.

A3 (Fpigr)(V(z,y) € Ri)(#{2 | ez, 2) = j, c(z,y) = k} = pijk)

Definition 1.8. For G < Sym(Q2), X(G) := (9;orbitals). We refer to these as “the group
case.”

Exercise 1.9. X(G) is a coherent configuration.

Exercise 1.10. G < Aut(X(G)), the group of color-preserving permutations. = € Aut(X) if
(Va, y)(c(z, y) = e(2™, y7))

Remark 1.11. There exist coherent configurations without a group. In fact, there are expo-
nentially many rank-3 coherent configurations with no automorphisms.

Well, we always lose in translation. The question is how much.

Exercise 1.12. The number of x — - -+ — y walks of a given color-composition only depends
on ¢(z,y). E.g., how many walks from = to y of length 4 are colored red, blue, purple, blue
(in order)?

Definition 1.13. X is homogeneous if Ry = A (i.e., (Vz,y)(c(z,x) = c(y,y)))-
Exercise 1.14. X(G) is homogeneous <= G is transitive.

Exercise 1.15. If X is homogeneous, then every weak component of each X; is strongly
connected.

Exercise 1.16. If X is homogeneous, then (Vx)(Vi)(in-degree,(x) = out-degree,(x) = p; (p;

does not depend on z). So X; is Eulerian, and indeed is regular.

By the way, ZZ:_& pi = n, since every vertex is connected to every other (including itself)
in the graph UX;, whose edge set contains all n? ordered pairs.

Definition 1.17. X is a primitive coherent configuration if X is homogeneous and ALL con-
stituent digraphs X;, ¢ > 1 are connected.

Exercise 1.18. X(G) is primitive <= G is primitive. (DO!l!)
Definition 1.19. X is uniprimitive coherent configuration if X is primitive and rank > 3.
Exercise 1.20. X is uniprimitive <= G is uniprimitive (primitive but not doubly transitive).
G < Sym(Q), ¥ C Q. Look at the pointwise stabilizer, Gy, = [,cy Gz If Gy = {1}, then
|G| < nlYl, in fact |G| < n(n—1)...(n—|¥|+1). Call such a ¥ a “base” of G.
We shall prove, using only elementary graph theoretic arguments, that

Theorem 1.21. If G is uniprimitive, then |G| < exp(4y/n(lnn)?).



Lemma 1.22. If G is uniprimitive, then (3¥ C Q)(|¥| < 4y/nlnn and Gy = {1}).

Examples: How large is the smallest base for various classes of permutation groups?

Definition 1.23. z distinguishes = and y if ¢(z,z) # c(y,z). D(z,y) ={z | c(z,2) # c(y,2)}
is the distinguishing set for x,y.

Exercise 1.24. If X = X(G) and z € D(xz,y), then z,y are not in the same orbit of G,.
(Obvious, because the group preserves the colors.)

Definition 1.25. A distinguishing set of X is any set ¥ C Q such that (Vx # y) (YN D(x,y) #
(). In other words, for every pair x,y, ¥ contains an element which distinguishes them.

Exercise 1.26. For X = X(G), if ¥ is a distinguishing set, then ¥ is a base for G.

Theorem 1.21 will follow from the following result.
Theorem 1.27. If X is a uniprimitive coherent configuration, then there exists a distinguishing
set U such that |¥| < 4y/nlnn.

This will be an immediate consequence of the following. From now on, let us always assume
X is a uniprimitive coherent configuration.
Theorem 1.28 (Main technical theorem). For every x,y, |D(x,y)| > /n/2.

Proof: [Main technical theorem = Theorem 1.27]. Pick uq, ..., u,, at random, and hope that
we picked enough to hit each D(x,y).

D m
Pr(D(z,y) not hit) = <1 _ |(:c,y)|>
n
< exp <—|D($’y)|7n> .
n
Hence, by the Union Bound,

i n Dyninm

Pr((3z,y)(D(x,y) not hit)) < <2> exp (_n>

D...
< exp (—mmm +2lnn) ,
n

where Dyin = ming, |D(z,y)]|.

For this, it is sufficient to show

Do
exp< mlnm+21nn) <1
n
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or equivalently

Dmin

Zmin 4 9 lnn <0
n

which follows from

2n1
m > PR o 4y/nln(n) =: m.

min

The last inequality used the Main technical theorem, which gives a lower bound on D ;.

2 Min size of distinguishing sets

We spend the rest of this class with proving the Main technical theorem above.
Exercise 2.1. |D(z,y)| depends only on ¢(z,y).

Notation 2.2. Let D(i) := |D(z,y)|, where i = c(z,y). X; = (% R;). Let X! = (% R;UR; ")
be the corresponding undirected graph.

Lemma 2.3. Fori > 1, if X! is not the complete graph, then diam(f{) =2.

Proof: There exist x,y at distance 2 in Y{, because there exist x, z not adjacent in Y{, but

X! is connected by primitivity, and so the third vertex of any minimal x, z-path is at distance
2 from zx.

Now take any u,v € 2, not adjacent in YZ’ Need to show: distf(u, v) > 2. Need to show:

u,v have a common neighbor in X!. c(u,v) € {i,i~'}. Tmplies # common neighbors of u,v in
X! is the same as for z,y.

Exercise 2.4. If X is a regular graph of degree p and diameter = 2, then p > /n — 1.

Exercise™ 2.5. p = y/n — 1 under the above conditions implies p € {2,3,7,57}. Hint. Figure
out a connection to girth. This exercise is only for students who took the first half of this
course.

Lemma 2.6. (Vi>1)(pi<n—1—+n—1).

Proof: If X! is the complete graph, then p; = (n — 1)/2 and we are done. Otherwise, use
Lemma 2.3 and Exercise 2.4.

Notation 2.7. We shal consider the average distinguishing number

ey 1D )|

b= n(n—1)

Also, let pmax := max; p;.



Lemma 2.8. D >N — ppax > Vn— 1+ 1~ y/n.

Proof: Count the number of triples (z,y, z) such that z ¢ D(z,y). This means c(z,z) =
c(y, z) = p; for some i. This is

S pipi — 1)

S (pi— 1)

n—D= n—1 < Pmax 1 < Pmax-
Lemma 2.9. D(i) < dist (1)D(j).
Proof: Let xg,x1,...,24 be a in Xj’» path where c(zg, zq) = i. D(xg,2q) C UleD(:vi_l,xi).

The size on the left side is D(i); all stes on the right side have size D(j).

Notation 2.10. diam(i) := diam(X]).

Corollary 2.11. D(j) > D/ diam(j).

Proof: Need: D < diam(j)D(j). Pick i such that D(i) > D. Then disty, (i) < diam(X}) =
diam(j).

Corollary 2.12. If diam(i) = 2 then D(i) 2 v/n/2.

Lemma 2.13 (Zemlyachenko). If diam(i) > 3 then D(i) > p;/3.

Proof: Let z,y,z,w be a shortest path from z to w in X/. Let X/(z) = { neighbors of z in
color i }.

Claim 2.14. X/(z) C D(z,w) and D(i) > |D(z,w)|/3. The Lemma is immediate from the

following claim:

The claim is easy: if some X/-neighbor u of  did not distinguish x from w then c(u,w) =
c(u,x) = i*, so x —u —w would be an X!-path of length 2, contradicting the assumption that
dist;(x, w) = 3. Now |D(x,w)| < 3D(i) by Lemma 2.9.

Exercise 2.15. Suppose there exists an edge of color i between X;(x) and X;(z). Then there
exist at least max(p;, p;) such edges.

Lemma 2.16. (Vh # 0)(Vz)(z distinguishes at least n — 1 pairs of color h).

Proof: Let us construct a graph H using the set V = {0,1,...,7 — 1} of colors as vertex set.
Let w(i, j) be the number of edges of color h or ™! from X;(z) to X;(z). Put an edge between
i and j if w(i,j) # 0; assign weight w(i, j) to this edge. It follows from Exerciseconn-ex that
if there is an {i,j} edge then w(i, j) > max(p;, p;).



H is a connected graph. This follows from the primitivity of X (why?). Let T" be a spanning
tree of H. Let us orient T away from vertex (color) 0. z distinguishes > 7 edges of color h,
where 7 := total weight of edges of T

r—1
=Y wi, )= pi=) p=n—1L
=1

Corollary 2.17. D(i) > (n—1)/p;.

Proof: Count the triples N = |{(z,y, 2) | ¢(z,y) =i,z € D(z,y)}| in two different ways.

Count by (z,y). The number of pairs (z,y) such that ¢(z,y) = i is np;. For each such pair,
there are D(7) choices for z. Thus,
N =np;D(3).

Now count by z. There are n choices for z. Given z, there are at least n — 1 pairs (z,y)
distinguished by z. Thus
N =np D) = n(n — 1),

and so
plD(’L) >n—1.
Corollary 2.18. If diam(i) > 3 then D(i) 2 /n/3.

Proof: Multiplying the expressions for D(i) from Lemma 2.13 and Corollary 2.17, we get

D(i)22&.n—1:n—1'
3 Pi

w

Thus

B

n—1

3 V3

D(i) >

This result, combined with Corollary 2.12, completes the proof of the Main Theorem.
This proof is based on L. Babai: “On the order of uniprimitive permutation groups,” Annals
of Math. 113 (1981), 553-568, as simplified by N. Zemlyachenko a year later.

Conjecture 2.19. For uniprimitive coherent configurations, Dpyin = Q(n — pmax). (Note that
this is true for the average rather than the minimum size of distinguishing sets by Lemma 2.8.)

Another open question:

Conjecture 2.20. For primitive coherent configurations of rankr > 4, Dy = Q(nl_l/(r_l)))-
Or at least Dyin = Q(nl_f(r)), where f(r) — 0.

Note that the first statement is true for r = 2.
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