
Graph Theory – CMSC-27500 – Spring 2015
Instructor: Laszlo Babai

http://people.cs.uchicago.edu/∼laci/15graphs
Homework set #10. Posted 5-1, 12:30am
Due Tuesday, May 5, typeset in LaTeX.

Instructor will hold a problem session Friday, May 1, 3:30–4:30pm, in
Ry-277 (optional, will help you prepare for the next quiz). Come prepared
with questions.

Read the homework instructions on the website. PRINT YOUR
NAME ON EVERY SHEET you submit. Use LaTeX to typeset your
solutions. (You may draw diagrams by hand.) Hand in your solutions on
paper, do not email. If you hand in solutions to CHALLENGE problems,
do so on a separate sheet, clearly marked “CHALLENGE,” and notify the
instructor by email to make sure it won’t be overlooked.

Carefully study the policy (stated on the website) on collaboration, in-
ternet use, and academic integrity. State collaborations and sources
both in your paper and in email to the instructor.

Definitions, notation. As before, G = (V,E) denotes a graph or digraph
with n vertices and m edges. For a digraph G, we denote the directed line-
graph of G by ~L(G). So the vertices of ~L(G) are the edges of G; and for
two edges u → v and w → z of G there is an edge (u → v) → (w → z) in
~L(G) if v = w. For a digraph G we define the (undirected) graph G̃ by
ignoring the orientation of the edges of G (and removing loops and parallel
edges). So for instance if T is a tournament then T̃ is a complete graph.
Recall that the girth of a graph G is the length of its shortest cycle. The
odd-girth of G is the length of its shortest odd cycle. (So the odd-girth of a
bipartite graph is ∞.)

10.1 DO: Review the proof of the Kőváry–Turán–Sós theorem: If the graph
G has no 4-cycles then m = O(n3/2). More specifically we proved that
m ≤ (1/2)(n3/2 + n).

10.2 HW (8 points) Prove: If the graph G does not contain K2,3 then
m = O(n3/2). Give a specific bound like in 10.1.

10.3 DO: Let V be a set of n points in the plane. Define the unit-distance
graph UD(V ) as follows: V is the set of vertices; two points u, v ∈ V are
adjacent if they are at unit distance in the plane. Prove: m = O(n3/2)
(where m is the number of edges of UD(V )).
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10.4 CH (7+5+5 points) (Erdős–DeBruijn Theorem) Let k be an integer.
Prove: An infinite graph G is k-colorable iff all finite subgraphs of
G are k-colorable. Give three proofs: (a) From first principles,
using Zorn’s lemma only. (b) Using Gödel’s Compactness Theorem
of first-order logic. (c) Using Tychonoff’s Compactness Theorem in
topology.

10.5 DO (optional): Let kr denote the chromatic number of the unit-distance
graph with vertex set Rr. (This is an infinite graph.) By the preced-
ing exercise, kr is the maximum chromatic number among all finite
unit-distance graphs in Rr. (a) Prove: 4 ≤ k2 ≤ 7. In other words,
the unit-distance graph of the plane is 7-colorable, and there are fi-
nite subsets of the plane of which the unit-distance graph requires at
least 4 colors. (In fact, there is one with only 7 points.) (Note: The
exact value of k2 is not known; the stated bounds are the best bounds
known.) (b) Prove: there exists a constant C such kr ≤ Cr. (This
is easy.) (c)(Frankl–Wilson Theorem) There exists a constant c > 1
such that kr ≥ cr. (This is hard.)

10.6 DO: Let G be a graph. Prove: if G 6⊇ C4 then χ(G) = O(
√
n).

10.7 CH (8 points): Prove: if G 6⊇ C5 then χ(G) = O(
√
n).

10.8 DO: Let G be a digraph. Prove: χ(G) ≤ 2χ(
~L(G)).

10.9 DO: Let G be a DAG. Prove: (a) ~L(G) is a DAG. (b) The undi-

rected graph ~̃L(G) is triangle free. Note: There are two kinds of
tournaments on three vertices: the directed cycle and the transitive
triple (ordered set). You need to show that neither of these two occur
in the directed line-graph of a DAG.

10.10 DO (triangle-free graphs of large chromatic number): Prove: for every k
there exists a triangle-free graph G such that χ(G) ≥ k. In fact, there
is such a G with n < 4k vertices.

10.11 CH (8 points) (small triangle-free graphs of large chromatic number):
Prove: There exists a constant C such that for every k there exists a
triangle-free graph G such that χ(G) ≥ k and n ≤ kC .

10.12 DO: Let G be a DAG. Prove: the odd-girth of ~̃L(G) is strictly greater
than the odd-girth of G̃. (Note: this is a generalization of 10.9.)
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10.13 DO: Prove: for every k and g there exists a graph G of odd-girth
≥ g such that χ(G) ≥ k. Estimate the order of G (number of
vertices) we get when g = 7. (Hint: combine problems 10.8 ad
10.12.) — Comment. For a long time it was not known whether
one can also get rid of the 4-cycles. Finally Erdős proved in 1959, using
the probabilistic method, that indeed one can; in fact the result stated
in this exercise remains true with “girth” in place of “odd girth.” The
next two exercises shed some light on why this was so difficult.

10.14 DO (optional): Prove that 10.13 remains true among infinite graphs
with k an infinite cardinal (while g is a positive integer). — Hint:
The same proof works. In particular, 10.8, 10.9, and 10.12 remain
valid for infinite graphs.

10.15 CH (Erdős–Hajnal): Prove: If the infinite graph G has uncountable
chromatic number then G ⊃ C4. In fact, G ⊃ Km,ℵ1 for every pos-
itive integer m. — Comment: This shows that Erdős’s result
mentioned in the comment to exercise 10.13 cannot be generalized to
infinite graphs; therefore its proof requires methods that don’t gener-
alize. Note that the method with which the odd-girth result is proved
in the exercises above does generalize to the infinite (see 10.14).

10.16 DO: Let G be a graph. Prove: If every vertex has degree ≥ n/2 then
G is Hamiltonian. — Hint: use the saturation method: assume
G is not Hamiltonian; keep adding edges as long as you can without
making the graph Hamiltonian. (You saturated the graph with respect
to being non-Hamiltonian.) So now you have a non-Hamiltonian graph
that will become Hamiltonian if you add any edge.

10.∞ DO: More problems to follow. Please check back later.
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