
Graph Theory – CMSC-27500 – Spring 2015
Instructor: Laszlo Babai

http://people.cs.uchicago.edu/∼laci/15graphs
Homework set #13. Posted 5-15, 3:45pm
Due Tuesday, May 19, typeset in LaTeX.

Instructor will hold a problem session Monday, May 18, 4:30–5:20pm, in
Ry-276 (optional, will help you prepare for the next quiz). Come prepared
with questions.

Read the homework instructions on the website. PRINT YOUR
NAME ON EVERY SHEET you submit. Use LaTeX to typeset your
solutions. (You may draw diagrams by hand.) Hand in your solutions on
paper, do not email. If you hand in solutions to CHALLENGE problems,
do so on a separate sheet, clearly marked “CHALLENGE,” and notify the
instructor by email to make sure it won’t be overlooked.

Carefully study the policy (stated on the website) on collaboration, in-
ternet use, and academic integrity. State collaborations and sources
both in your paper and in email to the instructor.

Definitions, notation. A multigraph G = (V,E, ψ) consists of a set V of
vertices, a set E of edges, and an assignment ψ : E → {unordered pairs of
not necessarily distinct vertices}. So ψ(e) = {u, v} means that the edge e
joins the vertices u and v. If u = v then e is a “loop.” If for edges e, f ∈ E we
have ψ(e) = ψ(f) then we say that e and f are parallel edges. We continue
to use n to denote the number of vertices and m the number of edges.

Multi-digraphs are defined analogously; here the function ψ : E → V ×V
assigns ordered pairs of vertices to each edge.

We say that the (multi)graphG is k-connected between the vertices u and
v if there exist k internally disjoint paths between u and v. The connectivity
of G between u and v, denoted κ(G;u, v), is the largest k such that G is
k-connected between u and v. Note that κ(G) = minu6=v κ(G;u, v).

“Connectivity” is also referred to as “vertex-connectivity.”
We say that the (multi)graph G is `-edge-connected between the vertices

u and v if there exist k edge-disjoint paths between u and v. The edge-
connectivity of G between u and v, denoted λ(G;u, v), is the largest ` such
that G is `-edge-connected between u and v. The edge-connectivity of G is
λ(G) = minu6=v λ(G;u, v).

(“λ” is the Greek letter “lambda.”)
The directed multigraph versions of these notions of connectivity are

defined analogously.
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Let H be a multigraph. A subdivision of H is obtained by subdividing
some of the edges of H by new vertices (which will then have degre 2). A
subdivision of H is also called a topological H. Notice that the subdivisions
of K2 are the paths and the subdivisions C1 (a loop) are the cycles. The
subdivisions of K5 and K3,3 are called Kuratowski graphs. Two multigraphs
are said to be homeomorphic if they are subdivisions of the same multigraph.

A contraction of a graph G is a graph defined in the following way:
Let V = V1 ∪ · · · ∪ Vk be a partition of V such that the subgraph induced
by each Vi is connected. Let H have vertex set [k]; we make i, j adjacent
(1 ≤ i < j ≤ k) if there is an edge between Vi and Vj . So for instance K5 is a
contraction of of the Petersen graph (what is the partition?). Contractions
can be obtained by repeatedly contracting an edge. A minor of G is a graph
isomorphic to a subgraph of a contraction of G.

13.1 DO: Study multigraphs and multi-digraphs from the Bondy–Murty
text.

13.2 DO: (a) Extend the concept of a network and network flows to multi-
digraphs. (b) Prove the Max-flow min-cut Theorem in this more gen-
eral context. Do not repeat the proof of the original (non-multi) ver-
sion; simply reduce the multi version to the non-multi version.

13.3 DO: Extend all the four versions of Menger’s Theorem to multi-(di)graphs.
Prove them by reduction to the non-multi situation.

13.4 DO (Maximal vs. maximum set of internally disjoint paths): Find a graph
with two special vertices, s and t, such that κ(G; s, t) = 100 but there
exists an s–t path P that alone is a maximal set of internally disjoint
s–t paths (i. e., no s–t path is internally disjoint from P ).

13.5 DO (Min degree vs. min cover in bipartite graphs): (a) Let G be a
bipartite graph with bipartition (A,B) (so A and B are the set of red
and blue vertices, respectively, in a 2-coloring of G). Let n1 = |A|
and n2 = |B|. Let k ≥ 1, and assume every vertex of G has degree
≥ k. Assume further that n1 > 2k and n2 > 2k. Prove: τ(G) ≥ 2k.
(b) Prove that the lower bound on τ given in part (a) is tight in the
following sense. For every n0, find a bipartite graph G as above such
that (b1) n1 ≥ n0 and n2 ≥ n0; and (b2) τ = 2k.

13.6 DO: (a) Learn about the Platonic solids (tetrahedron, cube, octahe-
dron, dodecahedron, icosahedron). Find the number of vertices, edges,
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and faces of each. (b) Find the dual of each Platonic solid (viewed
as a plane graph drawn on the sphere).

13.7 DO (Dual handshake theorem): Let G be a plane multigraph with r
regions; let the i-th region have si sides. Prove:

∑r
i=1 si = 2m.

13.8 DO: Recall that a “plane” graph means a plane drawing of a graph. (a)
Define isomorphism of plane graphs. (b) Find nonisomorphic plane
drawings of the same planar graph. (c) Let G be a plane multigraph.
Let D be the dual of G. Prove: the dual of D is isomorphic (as a plane
graph) to G.

13.9 DO: A bouquet of m circles is a multigraph with one vertex and m
edges. (Naturally, every edge is a loop.) What is the dual of this
multigraph?

13.10 DO: (a) Prove: A plane tree with n vertices has just one region. (b)
What is the number of sides of this region? Check your answer against
the Dual Handshake Theorem. (c) What is the dual of a plane tree
with n vertices?

13.11 DO: The star graph K1,n−1 is planar. Count the non-isomorphic plane
drawings of this graph.

13.12 DO: Find a 2-connected planar graph that has many non-isomorphic
plane drawings.

13.13 CH (Whitney’s Theorem, 8 points): Prove: a 3-connected planar graph
has a unique plane drawing. (Every pair of plane drawings is isomor-
phic.) Include your definition of isomorphism of plane drawings.

13.14 DO: (a) Prove Euler’s formula for connected plane multigraphs:
n −m + r = 2. (Review the proof from class.) (b) Modify Euler’s
formula to make it valid if the graph has c connected components.

13.15 DO: (a) Prove: If G is a connected plane graph with n ≥ 3 vertices
then every region has at least 3 sides. (b) Prove: If G is a planar
graph with n ≥ 3 vertices then m ≤ 3n − 6. (c) Note that this is
false for plane multigraphs. (d) Prove that K5 is not planar.

13.16 DO: (a) Prove: If G is a triangle-free connected plane graph with n ≥ 3
vertices then every region has at least 4 sides. (b) Prove: If G is a
triangle-free planar graph with n ≥ 3 vertices then m ≤ 2n− 4. (c)
Prove that K3,3 is not planar.

3



13.17 DO: True or false? “If a planar multigraph G has parallel edges then
every plane drawing of G has a 2-sided region.”

13.18 DO: (a) Prove: every planar graph has a vertex of degree ≤ 5. (b)
Prove: every planar graph is 6-colorable. (Your proof should be very
short, a couple of lines.) Remark: The famous “Four-color Theorem”
states that every planar graph is 4-colorable.

13.19 DO: (a) Review Kuratowski’s Theorem: a graph is planar if and only
if it does not contain a Kuratowski subgraph (topological K5 or topo-
logical K3,3. Flip through the proof of Kuratowski’s Theorem in the
Bondy–Murty text. (c) Find a Kuratowski subgraph in the Petersen
graph.

13.20 DO: (a) Let G = (V,E) be a graph and e ∈ E an edge. Prove: If G is
planar then G/e is planar. (b) Use part (a) to prove that Petersen’s
graph is not planar.

13.21 HW (8 points) Prove: the graph G is planar if and only if it does not
have K5 or K3,3 as a minor. (See definition in the preamble.) Use
Kuratowski’s Theorem and Problem 13.20 (a) without proof.

13.22 DO: Find a graph G and and edge e such that G/e has a topological
K5 subgraph but G does not. Your graph should have as few vertices
as possible. [This problem erroneously asked the same question about
a K5 as a minor. Error fixed 5-18 11:45pm]

13.23 HW (5+5 points): (a) Give a very simple proof that almost all graphs
are not planar. (b) Prove: For all sufficiently large n, the probability

that a random graph on n vertices is planar is less than 2−0.49n
2
.

(Proving part (b) will earn you partial credit for part (a); for full
credit for part (a), you need to give a separate, very simple solution
to (a).)

13.24 HW (6+2 points) (a) Prove: If a connected graph G has m ≤ n + 2
edges then G is planar. (b) Show that this becomes false if we drop
the condition of connectedness.
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