Graph Theory — CMSC-27500 — Spring 2015
http://people.cs.uchicago.edu/~laci/15graphs
Homework set #4.  First batch posted 4-9, 8am, updated 10:20am.
Problems 4.16 — 4.31 added at 11:30pm.
Due Tuesday, April 14 (except 4.1 due Apr 9) typeset in LaTeX.

Skipping HW set #3 so numbering remains in sync with HW submission
dates. “HW set #3” will refer to the items on HW set #2 due Thursday,
April 9, viz. HW problems 2.16, 2.21, 2.22 (bonus) and DO exercise 2.14,
as well as a review of the Quiz-1 problems as DO exercises.

Do not submit homework before its due date; it may get lost by
the time we need to grade them. If you must submit early, write the early
submissions on separate sheets, separately stapled; state “EARLY SUBMIS-
SION” on the top, and send email to the instructor listing the problems you
submitted early and the reason of early submission.

Read the homework instructions on the website. The instructions
that follow here are only an incomplete summary.

Hand in your solutions to problems marked “HW” and “BONUS.” Do
not hand in problems marked “DO.” Warning: the BONUS problems are
underrated. PRINT YOUR NAME ON EVERY SHEET you submit. Use
LaTeX to typeset your solutions. (You may draw diagrams by hand.)
Hand in your solutions on paper, do not email. If you hand in solutions to
CHALLENGE problems, do so on a separate sheet, clearly marked “CHAL-
LENGE,” and notify the instructor by email to make sure it won’t be over-
looked.

Carefully study the policy (stated on the website) on collaboration, in-
ternet use, and academic integrity. State collaborations and sources
both in your paper and in email to the instructor.

Definitions, notation. “Iff” is a shorthand for “if and only if.” — In
this problem sheet, Problems 4.1-4.21 are GRAPH problem, the rest are
DIGRAPH problems.

In all GRAPH problems, unless otherwise stated, we have a graph G =
(V, E) with n vertices and m edges. — For u,v € V we write u ~g v to
indicate that u and v are adjacent in G. We omit the subscript “G” and
write u ~ v if the graph in question is clear from the context. — A forest
is a cycle-free graph. — A set A C V is a vertex cover (or “hittig set”) if
A intersects (“hits”) every edge. The size of the smallest vertex cover is the
covering number of G, denoted 7(G) (using the Greek letter “tau”). We
simply write 7 (omitting “(G)”) if the graph in question is clear from the
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context. (Similarly, we write v for v(G), etc. if there is no risk of confusion.)
— For a subset A C V we write Ng(4) ={veV | (Fwe A)(v~w)} (the
set of neighbors of A). This notation differs from the notation used in class;
from now on, this notation will be used. — A(G) denotes the maximum
degree of the vertices of G, i.e., A(G) = max,cy deg(v). (In class this
quantity was denoted deg,,,...) — The chromatic index (or edge-chromatic
number) of a graph is the minimum number of colors needed to color the
edges so that adjacent edges have different color. (Two edges are adjacent if
they share a vertex.) The chromatic index of G is denoted x'(G). According
to Vizing’s Theorem, A(G) < X'(G) < 1+ A(G). We say that G is of “class
17 if X(G) = A(G) and “class 2”7 otherwise. — A 1-factor is a perfect
matching. A 1-factorization of a graph is a partition of F into perfect
matchings. (So if a 1-factorization exists then the graph must be regular;
and a regular graph admits a 1-factorization iff it is of class 1.) — The
vertices of the line graph L(G) of a graph G = (V, E) are the edges of G;
and vertices e, f of L(G) are adjacent in L(G) if they intersect (as edges of
). — For additional definitions and notation on graphs, see the first two
HW sets.

In all DIGRAPH problems, unless otherwise stated, we have a digraph
G = (V, E) with n vertices and m edges. — For u,v € V we write u — v
to indicate that there is a directed edge from u to v. — deg™ (v) is the out-
degree and deg™ (v) is the in-degree of vertex v. We say that G is Eulerian if
for every vertex, deg™ (v) = deg™ (v). — Walks, paths, closed walks, cycles
are defined analogously to the undirected case except now the orientation
of the edges must be observed. While in the undirected case the length of a
cycle was > 3, for digraphs we permit cycles of length 2 and 1 (loop). — We
say that vertex w is accessible from vertex v if there exists a v — -+ — w
path. — G is strongly connected if every vertex is accessible from every
vertex. — Mutual accessibility is an equivalence relation; its equivalence
classes are the strong components of G. So two vertices belong to the same
strong component if they are mutually accessible. — A DAG (directed
acyclic graph) is a digraph with no cycles. — A topological sort of a digraph
is a linear order of the vertices such that every edge goes from smaller to
larger. — With a digraph G we associate an undirected graph G by ignoring
the orientation of the edges and removing loops. So vertices v and w are
adjacent in G if v # w and v — w or w — v is an edge in G. We say that G is
weakly connected if G is connected. — An orientation of a graph G = (V, E)
is a digraph G = (V, E) where E includes exactly one of u — v and v — u
for every pair u,v of vertices adjacent in G. So G has 2™ orientations;
they have no cycle of length < 2. — A tournament is an orientation of the



complete graph.
GRAPH PROBLEMS

4.1

4.2

4.3

4.4

4.5

4.6

4.7

DO, due Thursday, April 9 (First Quiz) Review and solve the prob-
lems of the first quiz (posted), including the Bonus problem, before
Thursday’s class.

DO: Let ¢(G) denote the number of connected components of G.  (a)
Prove: G is a forest if and only if every connected component of G is
a tree.  (b) Prove: if G is a forest then ¢(G) =n —m. (c) Prove
that for every graph G we have ¢(G) > n—m. (d) Prove: G is a
forest if and only if ¢(G) = n — m.

DO: (a) Prove: aset A CV is a vertex cover iff its complement V' \ A
is an independent set.  (b) Prove: 7 =n—a. (c) Determine v and
T for paths, cycles, complete graphs, and complete bipartite graphs.
(d) Determine v and 7 for grids and for toroidal grids. ~ (e) Determine
all graphs for which 7 = 1. (f) Determine all graphs for which v = 1.

DO: Review the Konig-Hall “Marriage Theorem:” Let G be a bipar-
tite graph with vertex partition V' = L U R (all edges connect L and
R). We say that L is “fully matched” if there exists a matching of size
|L|. A subset A C L is a Kdnig-Hall obstacle if |[Ng(A)| < |A|.
Theorem: L is fully matched iff there is no Konig—Hall obstacle,
ie., iff (VA C L)( the Konig-Hall condition |Ng(A)| > |A| holds ).
[Typo in last line corrected 4-13 4pm|]

DO: (a) Prove: v < 7 for all graphs.  (b) Find a graph G such that
v(G) < 7(G).  (c) Prove: 7 < 2v for all graphs.  (d) For every
k >0 find a graph G such that ¥(G) = k and 7(G) = 2k. Let G have
as few edges as possible. (e) For every k > 0 find a connected
graph G such that v(G) = k and 7(G) = 2k.

DO: (a) Review Konig’s Theorem: If G is bipartite then v(G) = 7(G).
(b) Deduce the Marriage Theorem from Ko6nig’s Theorem.  (c¢) Find
a non-bipartite graph G for which v(G) = 7(G).

DO: Let A be a matrix. A k x £ submatrix is obtained by selecting
k rows and ¢ columns and deleting every row and every column not
selected. Count the k x £ submatrices of an n X m matrix.



4.8

4.9

4.10

4.11

4.12

4.13

DO: Let us say that a k x £ submatrix of an n x n matrix is fat if
k+¢>n+1. (This is local terminology, i.e., it has been invented just
for this problem.) Let X be the nxn matrix of whose (4, j) entry is the
variable x;;. Let B be a matrix obtained from X by replacing some
of the x;; by zero. So each entry of B is either zero or a variable, and
all variables occurring are distinct. Consider the determinant det(B);
this is a multivariate polynomial which is linear (of degree < 1) in
each variable. Prove: det(B) = 0 (the identically zero polynomial) iff
B has a fat submatrix consisting only of zeros.

DO: Let M C E be a matching and C' C V" a cover of a (not necessarily
bipartite) graph G. Prove: If |[M| = |C| then both of them are optimal,
ie, v(G)=|M|=|C|=71(G).

DO: (a) Review the proof of Konig’s Theorem (alternating paths, aug-
menting paths, finding a matching and a cover as in the preceding
exercise).  (b) (Optional) The proof provides an efficient algorithm
to find a maximum matching and a minimum cover in a bipartite
graph. Estimate the running time of the algorithm in terms of n and
m.

DO: (a) Prove: The chromatic index of G is > A(G) (the maximum
degree of ). (See def. in the “Definitions, notation” section before
the exercises.) (b) Understand Vizing’s Theorem: x/'(G), the
chromatic index of G, is either A or 1 + A. — Graphs for which
X'(G) = A(G) are called “class-1 graphs,” all others “class 2.7 (c)
Prove: If G is regular of degree k then G is of class 1 iff E' is the union of
k perfect matchings. (These perfect matching are then necessarily dis-
joint.) — A perfect matching is also called a 1-factor (a subgraph in
which every vertex has degree 1; d-factors are defined analogously). A
decomposition of E into perfect matchings is called a 1-factorization.
So a regular graph is of class 1 iff it has a 1-factorization.  (d) Prove:
If G is k-regular of class 1 and k£ > 1 then n is even.

DO: (a) Let G be a trivalent graph, i.e., a regular graph of degree
3. Prove: if G is Hamiltonian then G is of class 1. (b) Prove:
Petersen’s graph is of class 2. Note that it follows from this statement
that Petersen’s graph is not Hamiltonian.

DO: (a) Prove: If G is a non-empty regular bipartite graph then G has
a perfect matching (i.e., ¥(G) = n/2). (“Non-empty” means m > 0.)



4.14

4.15

4.16

4.17

(b) Prove: Every regular bipartite graph is of class 1 (i.e., it has a
1-factorization).

DO: (Scheduling a round-robin tournament) Prove: For every
even number n, a round-robin chess tournament of n players can be
scheduled in n — 1 rounds (so each player plays in every round). (In
a round-robin tournament, each player plays against each player ex-
actly once.) In other words, prove that K, is of class 1 (for even
n). (Hint: there is a very simple explicit 1-factorization of K, using
regular polygons.) — Comment: the start of a chess tournament in
the 19th century was delayed because the judge forgot to bring his
1-factorization table along.

DO: (a) Study the instructor’s “Puzzle problem” collection (accessible
from his REU page).  (b) Solve Problem 5 (dominoes) on the Puzzle
sheet.  (c¢) Rephrase the domino problem as a question about the
existence of a perfect matching in a graph. (d) Solve Problem 6
(triominoes) on the Puzzle sheet.  (e¢) CHALLENGE (6 points): Solve
Problem 7 (band-aids) on the Puzzle sheet.

HW (10 points) Beyond the seven seas there is a tiny island, 6 square
miles in all. The island is inhabited by six native tribes and by six
turtle species. Each tribe and each turtle species occupies one square
mile of territory; the territories of the tribes don’t overlap with one
another; nor do the territories of the different turtle species.

Each tribe wishes to select a totem animal from among the turtle
species found in the tribe’s territory; and each tribe must have a dif-
ferent totem animal.

Prove that such a selection is always possible. You may use, without
proof, a DO exercise stated in this problem set.

HW (8+8 points) As before, Pg(z) denotes the chromatic polynomial
of the graph G. Recall that Pp (z) = x(z — 1)"~! (where P, is the
path of length n — 1).

(a) Prove: for n > 4 we have

Fe, (x) = Pp,(x) = Pc,_, (¢).
(b) Use part (a) to prove that

Fe,(z) = (=1)" (1 —2)" = (1 —2)).
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4.18

4.19

4.20

4.21

HW (7 points) Prove: the line graph L(K,. ;) of the complete bipartite
graph K, s is the Cartesian product of two graphs. Which two graphs?

DO (a) How is L(K5) related to the Petersen graph?  (b) Use this
connection to prove that the Petersen graph has 120 automorphism.
(c) (Optional) Prove that the automorphism group of the Petersen
graph is isomorphic to S5, the symmetric group of degree 5.

DO Prove: x(L(G)) = X'(G). (The chromatic number of the line graph
is the chromatic index of the graph.)

DO Find the smallest graph G with the following properties: G is
connected and contains a cycle C' such that the removal of any vertex
of C' makes the graph disconnected. (“Smallest” means fewest edges.)

DIGRAPH PROBLEMS

4.22

4.23

4.24

4.25

4.26

4.27

DO (Directed Handshake Theorem):

Z deg™(v) =m = Z deg™ (v).

veV veV

DO: (a) Prove: If there exists a walk from u to v then there is a path
from u to v. (b) Prove: accessibility is a reflexive and transitive
relation.

DO: (a) Prove: mutual accessibility is an equivalence relation. — Its
equivalence classes are called the strong components of the digraph.
(b) Prove: G is strongly connected iff there is just one strong compo-
nent. (c¢) What are the strong components of a DAG?

HW (4+12 points): (a) Draw a weakly but not strongly connected
digraph in which every vertex belongs to a cycle of length > 3. Make
your digraph have as few edges as possible.  (b) Prove: If an Eulerian
digraph is weakly connected then it is strongly connected.

DO: Prove: a digraph admits a topological sort iff it is a DAG.

HW (6 points): [updated Apr 12 3:20am: loop-free condition added]
We say that a digraph is loop-free if it has no loops (cycles of length
1). Prove: “half of every loop-free digraph is a DAG.” More precisely,
let G = (V, E)) be a loop-free digraph. Prove that there exists a subset
F C E such that |F| > |E|/2 and (V, F) is a DAG. (Hint: your proof



4.28

4.29

4.30

4.31

should be no longer than two lines.) Do NOT collaborate on this
problem. It is an “Ah-ha” problem, you cannot collaborate without
hearing or revealing the complete solution. Think!

DO: Prove: Every tournament has a Hamilton path.

DO: Prove: Every strongly connected tournament with n > 3 vertices
is Hamiltonian (has a Hamilton cycle).

DO: We shall prove Stanley’s Theorem: The number of acyclic ori-
entations of a graph G is (—1)" Pg(—1) (where Pg(z) is the chromatic
polynomial of ). Verify this statement for the (a) complete graphs
(b) trees (c) cycles.

CHALLENGE (6 points) Prove: for every n > 3 there exists a tour-
nament with n vertices that contains at least (n — 1)!/2" Hamilton
cycles.  [Formula corrected 4-14 4pm|]



