
Graph Theory – CMSC-27500 – Spring 2015
http://people.cs.uchicago.edu/∼laci/15graphs

Homework set #5. Posted 4-14, 5:30pm, final update 11:45pm
Due Thursday, April 16, typeset in LaTeX.

Do not submit homework before its due date; it may get lost by
the time we need to grade them. If you must submit early, write the early
submissions on separate sheets, separately stapled; state “EARLY SUBMIS-
SION” on the top, and send email to the instructor listing the problems you
submitted early and the reason of early submission.

Read the homework instructions on the website. The instructions
that follow here are only an incomplete summary.

Hand in your solutions to problems marked “HW” and “BONUS.” Do
not hand in problems marked “DO.” Warning: the BONUS problems are
underrated. PRINT YOUR NAME ON EVERY SHEET you submit. Use
LaTeX to typeset your solutions. (You may draw diagrams by hand.)
Hand in your solutions on paper, do not email. If you hand in solutions to
CHALLENGE problems, do so on a separate sheet, clearly marked “CHAL-
LENGE,” and notify the instructor by email to make sure it won’t be over-
looked.

Carefully study the policy (stated on the website) on collaboration, in-
ternet use, and academic integrity. State collaborations and sources
both in your paper and in email to the instructor.

Definitions, notation. Notation: for a non-negative integer n we write
[n] = {1, . . . , n}. So [0] = ∅, [1] = {1}, [2] = {1, 2}, [3] = {1, 2, 3}, etc.

“LN” refers to the instructor’s online Discrete Mathematics Lecture
Notes. Read LN Chapter 7 (“Finite Probability Spaces”) for the relevant
definitions and basic facts. This preamble and the problem set describe only
some of these basics.

Let Ω be a non-empty finite set. A probability distribution over Ω is a
function P : Ω→ R such that

(∀x ∈ Ω)(P (x) ≥ 0) and
∑
x∈Ω

P (x) = 1.

The uniform distribution is defined by setting (∀x ∈ Ω)(P (x) = 1/|Ω|).
A finite probability space is a pair (Ω, P ), where Ω is a non-empty finite

set and P is a probability distribution over Ω. If only Ω is specified, we
assume P is uniform; this will often but not always be the case in applications
to graph theory.
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We call Ω the sample space and think of it as the set of all possible
outcomes of an experiment (such as a shuffled deck of cards (|Ω| = 52!),
a poker hand (|Ω| =

(
52
5

)
), or a sequence of n coin flips (|Ω| = 2n)). The

elements of Ω are called elementary events. The events are the subsets of
Ω. The probability of the event A ⊆ Ω is defined as P (A) =

∑
x∈Ω P (x).

Under uniform distribution we have P (A) = |A|/|Ω| for all events A (“naive
probability”). The event A is trivial if P (A) = 0 or P (A) = 1.

Let B be an event such that P (A) 6= 0. The conditional probability
P (A | B) (the probability of A given B) is defined as

P (A | B) =
P (A ∩B)

P (B)
.

A Boolean formula is a formula obtained by repeatedly applying the
Boolean operations of union, intersection, and complementation to variables

interpreted as sets, e. g., f(A,B,C,D) = (A∩D)∪((A ∩B) ∪ C) ∩ (B ∪D).
Events A and B are independent if P (A ∩ B) = P (A)P (B); they are

positively correlated if P (A ∩ B) > P (A)P (B); and negatively correlated if
P (A ∩B) < P (A)P (B). Events A1, . . . , Ak are independent if ∀I ⊆ [k]

P

(⋂
i∈I

Ai

)
=
∏
i∈I

P (Ai).

Other terms used to express independence are “fully independent” and “mu-
tually independent”; they just mean the same as “independent.” We some-
times add “fully” before “independent” to emphasize the distiction from
pairwise independence.

A random variable over the probability space (Ω, P ) is a function
X : Ω → R. The expected value of X is E(X) =

∑
x∈ΩX(x)P (x). For an

event A ⊆ Ω, the indicator of A ⊆ Ω is the random variable IA : Ω→ {0, 1}
defined by setting

IA(x) =

{
1 if x ∈ A
0 if x ∈ Ω \A.

A Bernoulli trial is an experiment with two possible outcomes called
“success” and “failure.” Let p denote the probability of success; so we can
think of the Bernoulli trial as flipping a biased coin which comes up Heads
(“success”) with probability p. A “sequence of Bernoulli trials” refers to
independent repetition of a Bernoulli trial, i. e., a sequence of independent
events A1, . . . , An where Ai represents the event of success of the i-th trial
(the i-th coin came up Heads); P (Ai) = p.

2



The problems in this sheet will always refer to a fixed finite probability
space (Ω, P ) (except for 5.24).

5.1 DO: Study the cards of the standard deck (52 cards divided into four
suits of 13 kinds (“ranks”)) and the various “hand strength” (card
combinations in a hand of five cards) in poker (such as “1 pair”, “2
pair”, “3 of a kind”, “straight”, “flush”, “full house”, “4 of a kind”,
“straight flush”, “royal flush”). Calculate the probability of each hand
strength when a hand of 5 cards is randomly dealt.

5.2 DO: Study the “Finite probability spaces” chapter from LN

5.3 DO: (a) P (∅) = 0 and P (Ω) = 1. (b) Let B denote the complement
of the event B, i.e., B = Ω \B. Prove: P (B) = 1− P (B).

5.4 DO (modular identity): Let A,B be events (over the same probability
space). Prove: P (A ∪B) + P (A ∩B) = P (A) + P (B).

5.5 DO (additivity): We say the events A and B are “almost disjoint” if
P (A ∩ B) = 0. (If A and B are disjoint then they are almost disjoint
but not necessarily conversely.) Let A1, . . . , Ak be pairwise almost
disjoint events. Prove: P (

⋃k
i=1Ai) =

∑k
i=1 P (Ai).

5.6 DO (union bound): Let A1, . . . , Ak be events. Prove:

P

(
k⋃

i=1

Ai

)
≤

k∑
i=1

P (Ai).

5.7 DO: (a) Prove: If A is a trivial event then for any event B, the events
A and B are independent. (b) Prove: If A is a trivial event tand
B1, . . . , Bk are independent events then A,B1, . . . , Bk are indepen-
dent. (c) Prove: A and A are independent iff A is a trivial event. (d)
Prove: If A,B are independent events then A and B are also indepen-
dent. (e) Infer from this that A and B are also independent (without
repeating the argument). (f) Assume A1, . . . , Ak are independent
events. For each i, let Ci be either Ai or Ai. Prove that C1, . . . , Ck are
independent. (g) Assume A,B,C,D are independent events. Prove
that A ∪ B, C, D are also independent. (h) (Boolean combina-
tions of disjoint sets of independent events are independent)
Assume A1, . . . , Ak are independent events. Let Π = (R1, . . . , Rt) be
a partition of the set [k] = {1, . . . , k}. Let fi be a Boolean formula in
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|Ri| variables (i = 1, . . . , t) and let Bi = fi(Aj : j ∈ Ri) (the Boolean
formula fi applied to the events corresponding to the i-th block of the
partition). Then B1, . . . , Bt are independent.

5.8 DO: Prove: If there exist k non-trivial independent events in a prob-
ability space of size n then n ≥ 2k. (The size of the probability space
(Ω, P ) means the size of the sample space, |Ω|.)

5.9 HW (6 points): Find a probability space and three events that are
pairwise but not fully independent. Make your probability space as
small as possible. Prove that it is the smallest with reference to a
“DO” exercise on this sheet; you do not need to prove that exercise.

5.10 BONUS (5 points): Find a probability space and k events that are
(k − 1)-wise but not fully independent. Make your probability space
as small as possible. Prove that it is the smallest with reference to
a “DO” exercise on this sheet; you do not need to prove that exer-
cise. A correct solution to this exercise also earns you the 6 points
for the preceding problem. Full clarity and simplicity are paramount;
complicated solutions get partial credit even if fully correct.

5.11 DO: Consider the uniform probability space over a sample space Ω
where |Ω| = p is a prime number. Prove: if A,B are non-trivial events
then they are not independent.

5.12 CHALLENGE (5+5 points) (a) Construct a probability space of size
O(k) with k pairwise independent non-trivial events. (b) Do the
same with triple-wise independent events.

5.13 CHALLENGE (6+4 points) Prove: (a) If there exist k pairwise inde-
pendent non-trivial events in a probability space then the size of the
space is ≥ k + 1. (b) If there exist k four-wise independent non-
trivial events in a probability space then the size of the space is Ω(k2)
(i. e., it is ≥ ck2 for some constant c > 0 and all sufficiently large k).

5.14 DO: LN 7.1.8 and 7.1.14 (independence/correlation of “sum of dice”
events)

5.15 DO: (a) Let B be an event such that P (B) 6= 0. For x ∈ B let
PB(x) = P (x)/P (B). Prove: (B,PB) is a probability space and for all
A ⊆ B we have PB(A) = P (A | B). (b) Let C be a nontrivial event.
For an event A ⊆ Ω, let (A | C) (“A given C”) denote the event A∩C
in the probability space (C,PC). (b1) Construct a probability space
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and three events A,B,C such that A and B are not independent but
(A | C) and (B | C) are independent and (A | C) and (B | C) are also
independent. (b2) Same as (b1) but make all the events mentioned,
including (A | C), etc., nontrivial.

5.16 DO: LN 7.1.9 (Theorem of Complete Probability)

5.17 DO (Probability of causes): Diseases A and B have similar symptoms.
Let W be the population of all patients showing these symptoms. The
two diseases can only be differentiated by costly tests. We know (from
sampling the population and performing these costly tests) that 70%
of W have disease A, 25% have disease B, and 5% have some other
disease. We consider the effectiveness of treatment T . We know that
60% of the patients with disease A respond to T , while only 12% of
the patients with disease B respond to treatment T . From the rest of
the population W , 40% respond to treatment T .

(a) A new patient arrives at the doctor’s office. The doctor deter-
mines that the patient belongs to W . What is the probability
that the patient will respond to treatment T?

(b) The patient’s insurance will not pay for the expensive tests to
differentiate between the possible causes of the symptoms. The
doctor bets on treatment T . A week later it is found that the
patient did respond to the treatment. What is the probability
that the patient had disease A? Show all the intermediate
results you need to compute.

5.18 DO: Let X be a random variable. Recall the definition of the expected
value E(X) (see preamble of this problem sheet). Prove:

minX ≤ E(X) ≤ maxX.

5.19 DO: (a) Let X be a random variable. Prove:

E(X) =
∑
y∈R

yP (X = y).

(This seemingly infinite sum over all real numbers is in fact just a sum
over the range of X, a finite and often very small set; in part (b) below
it is just {0, 1}.)
(b) Let IA denote the indicator of A. Prove: E(IA) = P (A).
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5.20 DO (linearity of expectation): (a) (abridged) Let X,Y be random vari-
ables (over the same probability space). Prove: E(X + Y ) = E(X) +
E(Y ). (b) (unabridged) Let X1, . . . , Xk be random variables (over
the same probability space) and let the αi be real numbers. Prove:

E
(∑

αiXi

)
=
∑

αiE(Xi).

5.21 DO: We repeat n times a Bernoulli trial with probability p of success
(flip a biased coin n times; the coin comes up Heads with probability p
and Tails with probability 1− p). Let X denote the number successes
(heads). Prove: E(X) = pn. (Note: The sample space in this problem
has size 2n.)

5.22 HW (9+2 points): (a) LN 7.2.13 (club with 2000 members). Assume
the club serves vodka legally to all its members. - Make sure you give
a clear definition of the random variables you use. The clarity of the
definition accounts for 2/3 of the credit. Explain the role of the vodka.
Hint. Learn about indicator variables (LN 7.2.6, 7.2.7). Represent the
number of lucky members as a sum of indicator variables. (b) State
the size of the sample space for this experiment.

5.23 DO: Consider a random tournament T on a given set V of n vertices.
(Flip an unbiased coin for each edge of the complete graph to decide its
orientation.) (a) Observe that the sample space for this experiment

has size 2(n2). (b) Let X denote the number of Hamilton cycles in
T . Prove: E(X) = (n − 1)!/2n. (c) Infer from this that there
exists a tournament with at least (n− 1)!/2n Hamilton cycles (Szele’s
Theorem). (This is a lot of Hamilton cycles!). — Note that we have
proved the existence of such a tournament without being able to
construct one. This method of proving the existence of an object is
called the probabilistic method.

5.24 DO (due Tuesday, April 20): Let us consider a Bernoulli trial with
probability p of success. Repeat the trial until the first success. Let
X be the number of trials performed. Prove: E(X) = 1/p. — Part
of your problem is to clarify what the question means. This is not
a finite probability space; the expected value in question will be an
infinite sum.
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