Graph Theory — CMSC-27500 — Spring 2015
http://people.cs.uchicago.edu/~laci/15graphs
Homework set #6.  Posted 4-17, 2am, updated 6:30am
Problem 6.20 added at 4:40pm, 6.21 at 11:45pm.
Due Tuesday, April 21, typeset in LaTeX.

Do not submit homework before its due date; it may get lost by
the time we need to grade them. If you must submit early, write the early
submissions on separate sheets, separately stapled; state “EARLY SUBMIS-
SION” on the top, and send email to the instructor listing the problems you
submitted early and the reason of early submission.

Read the homework instructions on the website. The instructions
that follow here are only an incomplete summary.

Hand in your solutions to problems marked “HW” and “BONUS.” Do
not hand in problems marked “DO.” Warning: the BONUS problems are
underrated. PRINT YOUR NAME ON EVERY SHEET you submit. Use
LaTeX to typeset your solutions. (You may draw diagrams by hand.)
Hand in your solutions on paper, do not email. If you hand in solutions to
CHALLENGE problems, do so on a separate sheet, clearly marked “CHAL-
LENGE,” and notify the instructor by email to make sure it won’t be over-
looked.

Carefully study the policy (stated on the website) on collaboration, in-
ternet use, and academic integrity. State collaborations and sources
both in your paper and in email to the instructor.

Definitions, notation. As before G = (V| E) denotes a graph with n
vertices and m edges.

Notation: for a non-negative integer n we write [n] = {1,...,n}. So
[0] =0, [1] = {1}, [2] = {1, 2}, [3] = {1,2, 3}, etc.

Let G = (V, E) be a graph and e = {u,v} € E an edge. The graph G —e
is defined as G —e = (V, E\ {e}) (deletion of edge ¢); note that no vertex
has been deleted. (In class I used the notation G \ e for this; from now on, I
will use G — e which is the more commonly used notation.) The graph G/e
is defined as G/e = (V', E’) where V' is obtained from V by identifying u
and v (so |[V'| = |V| —1); let us call the new vertex w. Adjacency is G/e
is defined as follows. Let z,y € V'. If x # w and y # w then x ~ag/e y iff
v ~gy. If y=wthen x ~qg/ yiff z ~g u or z ~g v (contraction of e).
So for instance K, /e = K,,_; for all n and C), /e = C),_1 for n > 4.

“LN” refers to the instructor’s online Discrete Mathematics Lecture
Notes. Read LN Chapter 7 (“Finite Probability Spaces”) for the relevant
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definitions and basic facts. This preamble and the problem set describe only
some of these basics.

Chromatic number of digraphs. A legal colorig for a digraph is defined
analogously to a legal coloring in a graph: For a coloring f : V' — { colors }
to be legal, we need that if v — v is an edge then f(u) # f(v). So for
instance a digraph with a loop has no legal coloring. For a loop-free digraph
G, the chromatic number x(G) is the minimum number of colors needed for
a legal coloring. This is the same as X(é) where G is the undirected graph
obtained from G by ignoring orientations.
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DO: Review the exercises from the previous problem sheets. Remem-
ber: the next quiz is Tuesday, April 21. It will contribute 8% to your
course grade.

DO: Prove the deletion/contraction recurrence for the chromatic poly-
nomial: If G = (V, E) and e € E then

Pg(x) = Pa—e(x) — Pge().

DO: Let DAG(G) denote the number of acyclic orientations of the
graph G. (Warning: this is local notation.) Prove the following dele-
tion/contraction recurrence for this quantity:

DAG(G) = DAG(G — e) + DAG(G/e).
DO: Prove Richard Stanley’s Theorem (1972), an unexpected con-
nection between colorings and acyclic orientations:
DAG(G) = (-1)"Pg(-1).

Hint. By induction on m, using the two preceding exercises. The base
cases are the graphs with m =0, i.e., G = K.

DO: (exponential decay beats polynomial growth) Let ¢ > 0
and k be constants. Assume f(n) = O(n*) and g(n) > 2°*. Prove:

lim,, o0 f(n)/g(n) = 0.
DO: Prove: (}) < n”/k!.
DO: Prove: e* > 1+ x for all z € R.

DO: Let 0 < z < 1 and let k be a positive integer. Prove:
(1—z)F>1— k.
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DO: Let T'= (V, E)) be a tournament. We say that 7" is k-paradozical
if it has n > k + 1 vertices and for every set A C V of |A| = k vertices
there is a vertex x € V' \ A such that x — A (z dominates A, i.e.,
(Vu € A)(z — u)). Prove (recall from class): if

O3

then there exists a k-paradoxical tournament with n vertices.

DO (Erdés): Fix k. Prove: almost all tournaments are k-paradoxical.
— Explanation. Consider a random tournament 7" on a given set
of n vertices. (The orientation of each edge is decided by flipping a
coin.) Let p, denote the probability that 7" is k-paradoxical. Then

limy, 00 pr = 1.

DO: Prove: there exists a constant C' such that for all k, if n > Ck?2F
then there exists a k-paradoxical tournament with n vertices. — Note:

k is not a constant in this exercise and C' must not depend on k. Hint:
Verify that Equation in Problem 6.9 holds. Use 6.6 and 6.7.

HW (16 points): Prove: almost all graphs have diameter 2. — Ex-
planation: Consider a random graph G on a given set of n vertices;
adjacency is decided by flipping a coin for each pair of vertices. Let p,
denote the probability that G has diameter 2. Prove: lim, oo pn = 1.
(Recall that the distance dist(u,v) between vertices u, v is the length
of the shortest u — --- — v path; and the diameter of G is diam(G) =
max,, yev dist(u, v).)

DO: (a) Prove: almost all tournaments are not DAGs.  (b) Prove:
for all sufficiently large n, the probability that a random tournament
on n vertices is a DAG is less than 270-497%

DO: Assume n = 0 or 1 (mod 4). (a) Prove: almost all graphs are
not self-complementary.  (b) Prove: for all sufficiently large n, the
probability that a random graph on n vertices is self-complementary
is less than 279247 and more than 279-257%

DO (due Thursday, April 23; the parts involving automorphisms are op-
tional): (Paley tournament) Let p be a prime, p = —1 (mod 4).
We define the digraph Pa,, as follows: V(Pay,) = {0,...,p—1} and for
u,v € V(Pay) we have the edge u — v if u # v and v —u is a quadratic
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residue mod p, i.e., (3z € Z)(v —u = 22 (mod p)). (In class I denoted
this tournament by P,, but that notation has already been reserved
for the path of length p — 1.)  (a) Prove that this is a tournament.
Indicate where you use the condition that p = —1 (mod 4).  (b)
Prove that the automorphism group of Pa, is edge-transitive, i.e., for
every pair of edges, e, f, there is an automorphism (self-isomorphism)
of Pa, that takes e to f.  (c) Prove that Pa, is self-converse, i.e., if
we reverse every edge, the tournament obtained is isomorphic to Pa,,.
(d) If instead we take p = 1 (mod 4) then the same definition gives
a graph (the Paley graph, which we also denote Pa,).  (e) Prove
that the automorphism group of the Paley graph is arc-transitive, i.e.,
for every pairs of adjacent pairs of vertices, (u,v) and (u’,v’), there is
an automorphism that takes u to v’ and v to v (f) Prove that the
Paley graph is self-complementary. — Later we shall see that all suffi-
ciently large Paley tournaments are k-paradoxical (Graham — Spencer
Theorem). The proof is based on “Weil’s character sum estimate,” a
deep result in number theory.

DO: (Erdés—Rényi random graphs) Let 0 < p < 1. Let V be a
given set of n vertices. Let us construct a random graph G on vertex set
V using a biased coin with probability p of coming up Heads to decide
adjacency among pairs of vertices (“Heads” means “adjacent”). This
procedure defines the probability space G, ,: the sample space is the
set of all graphs on vertex set V' (so it has size 2(3)); if H is a graph with
the given set of vertices and m edges then P(G = H) = pm(l—p)(g)*m.
(Verify!)  (a) What is the expected number of edges in G?  (b)
What is the expected number of triangles in G?  (c) What is the
expected number cycles of length k£ in G? — Your answers should
be very simple expressions.

DO: Prove: “half of every graph is bipartite.” — Explanation: Given
a graph G = (V, E), prove that there is a subset F' C FE such that
|F| > |E|/2 and (V, F) is bipartite. — Give two proofs: (a) a very
elegant 3-line proof using the probabilistic method; (b) by a very sim-
ple deterministic algorithm. (You need to prove that the algorithm
achieves the desired goal.)

CHALLENGE (16 points): Let £ > 3 and 0 < 6 < 1/k. Prove: for all
sufficiently large n there is a graph with n vertices, > n!*® edges, and
girth greater than k.  Hint. Use the Erdés—Rényi model. You may



6.19

6.20

6.21

use the Chernoff bound (see LN, last section of the chapter on Finite
Probability Spaces).

CHALLENGE (12 points): Fix € > 0. Prove: for all sufficiently large n,
if G is a graph with n vertices and m > n(lgg n)? edges then G has an
orientation G such that every sub-DAG of G has at most (m/2)(1+¢€)
edges.

HW (6+4 points, due Thursday, April 23): (a) Let G be a loop-free
digraph. Assume every vertex in G has out-degree < k. Prove: x(G) <
2k + 1.  (b) Prove that this bound is tight: for every k, construct
a loop-free digraph G such that the out-degree of every vertex is < k
and x(G) =2k +1. [Points for part (b) added 4-29]

DO: Let k£ > 1. Prove: a graph G is k-colorable iff G has an acyclic
orientation G such that G has no path of length k.  [Typo corrected
4-21 12:15am]



