## Graph Theory CMSC-27500 Final midterm. June 2, 2015 Instructor: László Babai

| Show all your work. | Do not use book, notes, or scrap paper. | The use of electronic devices |
|---------------------|-----------------------------------------|-------------------------------|

is strictly prohibited.

Write your answers in the space provided. You may <u>continue on the reverse</u>. The BONUS problems are underrated, solve the non-BONUS problems first.

This test contributes 42% to your course grade.

As usual, G = (V, E) is a graph or a digraph, n denotes the number of vertices, m the number of edges. If G is a graph then  $\alpha(G)$  denotes the independence number (maximum number of independent vertices),  $\omega(G)$  the clique number (maximum number of pairwise adjacent vertices),  $\chi(G)$  the chromatic number,  $\nu(G)$  the matching number (maximum number of disjoint edges), and  $\tau(G)$  the covering number (minimum number of vertices that hit every edge). We usually omit G from the notation and just write  $\nu$  for  $\nu(G)$ ,  $\alpha$  for  $\alpha(G)$ , etc.

When referring to a bipartite graph G = (V, E), we shall assume a bipartition  $V = R \dot{\cup} B$  (R: "red vertices," B: "blue vertices"; the dot indicates that these sets are disjoint). We say that R can be (fully) matched if  $\nu = |R|$ . For a set  $S \subseteq R$  let N(S) denote the set of neighbors of S, i.e., the set of vertices  $v \in B$  such that  $(\exists w \in S)(v \sim w)$ . Recall that the Marriage Theorem says: R can be fully matched if and only if for every subset  $S \subseteq R$  we have  $|S| \leq |N(S)|$ .

1. (30 points) State a "good characterization" theorem in as many of the following topics as you can: (a) perfect matchings in general (not necessarily bipartite) graphs; (b) DAGs; (c) graph coloring (but not "2-colorability"); (d) Hamiltonicity; (e) Ramsey Theory; (f) planarity; (g) internally vertex-disjoint paths. — State at most one result from each area. You gain points by precisely stating relevant results, including the name of the person whose result it is; you lose points by stating results that are not good characterizations.

2. (10 points) True or false: "Let  $s \neq t$  be vertices of the graph G. If each pair of s-t paths shares an edge then all s-t paths share an edge." Clearly state your answer and prove it. You may use a result proved in class; state the result.

3. (22 points) For every  $k \geq 3$ , construct a graph that does not contain  $K_k$ , has chromatic number  $\geq k+1$ , and has O(k) vertices. (Hint: first solve for k=3.)

4. (25+13 points) Let G = (V, E) be a bipartite graph with bipartition  $V = R \dot{\cup} B$ . Assume  $|R| = |B| = t \geq 1$  and let  $R = \{u_1, \ldots, u_t\}$  and  $B = \{v_1, \ldots, v_t\}$ . Define the  $t \times t$  incidence matrix  $M = (m_{ij})$  by setting  $m_{ij} = 1$  if  $\{u_i, v_j\} \in E$  and  $m_{ij} = 0$  otherwise. (a) Prove: If  $\det(M) \neq 0$  then M has a perfect matching. (b) Prove that the converse is false; give a small counterexample.



6. (6+6+5+12B points) (a) Let DAG(G) denote the number of acyclic orientations of G. Prove:  $DAG(G) \leq 2^m$ . (b) Characterize those graphs for which  $DAG(G) = 2^m$ . (c) Compute  $DAG(C_n)$ . (d) (BONUS) Prove:  $P_G(-1) = (-1)^n DAG(G)$  (Stanley's Theorem).

7. (BONUS: 6B+12B points) (a) Prove: a graph G is k-colorable if and only if it has an acyclic orientation H such that H has no paths of length k. (b) Prove: If G has an orientation L such that L has no paths of length k then G is k-colorable. (Note that L may have cycles.)

8. (16+8 points) Consider the Erdős–Rényi model  $G_{n,p}$  of random graphs: on a fixed set of n vertices, we decide adjacency by flipping a biased coin that gives "adjacent" with probability p independently for each pair of vertices. (a) Determine the expected number of 5-cycles. Your answer should be a very simple formula. Do not prove. (b) Prove: For  $t \geq 3$ , the expected number of t-cycles is less than  $(np)^t$ .

9. (25 points) Let G be a random graph from the  $G_{n,p}$  distribution where 0 . Prove: almost surely

$$\alpha(G) \le 1 + \frac{2\ln n}{p}.$$

10. (BONUS: 6 points) Use the previous two problems to prove Erdős's theorem: For all g and k there exists a graph of girth  $\geq g$  and chromatic number  $\geq k$ .

11. (8+14 points) Prove: for every  $\epsilon > 0$ , almost all graphs satisfy (a)  $\omega < n^{\epsilon}$  and (b)  $\chi > n^{1-\epsilon}$ . (You may use other problems from this test.)

12. (4+30+7B points) A graph is *tough* if for every non-empty subset  $S \subseteq V$ , the graph G-S has at most |S| connected components. (a) Prove: If G is Hamiltonian (has a Hamilton cycle) then G is tough. (b) Prove: if G is a regular graph of degree  $d \ge 1$  and G is d-edge-connected then G is tough. (c) (BONUS) Prove: there exists a tough graph that is not Hamiltonian. — Hint: the Petersen graph. Draw it with a 3-fold rotational symmetry to cut down the number of cases.

13. (25 points) Prove: every graph G has a 3-colorable subgraph with  $\geq 2m/3$  edges. Use the probabilistic method. State the size of your sample space. Give a clear definition of your random variables.

14. (27 or 16 points) Prove ONE of the following. (a)  $9 \rightarrow (4,3)$ . (b)  $10 \rightarrow (4,3)$ . — Use without proof that  $6 \rightarrow (3,3)$ .

15. (28 points) Prove that every triangle-free planar graph is 4-colorable. Use the fact that every triangle-free planar graph with  $n \geq 3$  vertices has  $m \leq 2n-4$  edges. Make your solution algorithmic; make it clear in what order you assign colors to the vertices.

16. (5+25 points) (a) State Tutte's necessary and sufficient condition for the existence of a perfect matching. Do not prove. (b) Deduce the Marriage Theorem (see Preamble) from Tutte's Theorem under the assumption |R| = |B| (the special case when the Marriage Theorem guarantees a perfect matching).

17. (15+8+6B points) Let G be a graph. Recall that  $\nu \leq \tau \leq 2\nu$ . (a) Find a non-bipartite graph satisfying  $\tau = \nu = 2$ . (b) For every  $k \geq 1$  find a <u>connected</u> graph G such that  $\nu = k$  and  $\tau = 2k$ . Just state the examples, do not prove. (c) (BONUS) Find a triangle-free non-bipartite graph with  $\tau = \nu = 3$ . [Typo corrected after test; originally the request was  $\tau = \nu = 2$ , which is impossible.]

18. (28 or 18 points) Prove ONE of the following: (a) If the graph G does not contain  $K_{3,3}$  as a subgraph then  $m = O(n^{5/3})$ . (b) If G does not contain  $K_{2,3}$  then  $m = O(n^{3/2})$ . (Note: these are special cases of a more general theorem by Kőváry, Turán, and Sós.) [Two bad typos corrected after the test; originally the exponents stated were 2/3 and 1/2]

19. (BONUS: 8 points) A digraph is called *Eulerian* if for each vertex v we have  $\deg^+(v) = \deg^-(v)$ . Prove: If an Eulerian digraph is weakly connected then it is strongly connected. ("Weakly connected" means connected as an undirected graph (ignoring the orientation of the edges).)

20. (BONUS: 12 points) Recall  $Tur\'{a}n$ 's  $graph\ T(n,k)$ : it has n vertices divided up into k parts  $V_1,\ldots,V_k$  as evenly as possible; two vertices are adjacent exactly if they don't belong to the same part. Let m(n,k) denote the number of edges of T(n,k). — Prove Tur\'{a}n's Theorem: If  $G \not\supseteq K_{k+1}$  then  $m \leq m(n,k)$ .

21. (BONUS: 15 points) Prove that Nagy's explicit Ramsey graph demonstrates  $\binom{v}{3} \not\to (v+1,v+1)$ . Recall the construction: the  $n=\binom{v}{3}$  vertices are labeled by 3-subsets of [v]; the vertices corresponding to subsets A and B are adjacent if  $|A \cap B| = 1$ .

## !!! FOR GRADERS ONLY — DO NOT WRITE ON THIS PAGE !!!

| 1.  | /30             | 12a | /4             |
|-----|-----------------|-----|----------------|
| 2.  | /10             | 12b | /30            |
| 3.  | /22             | 12c | $/7\mathrm{B}$ |
| 4a  | /25             | 13  | /25            |
| 4b  | /13             | 14  | /27            |
| 5a  | /25             | 15  | /28            |
| 5b  | /12             | 16a | /5             |
| 6a  | /6              | 16b | /25            |
| 6b  | /6              | 17a | /15            |
| 6c  | /5              | 17b | /8             |
| 7a  | /6B             |     |                |
| 7b  | $/12\mathrm{B}$ | 17c | /6B            |
| 8a  | /16             | 18  | /28            |
| 8b  | /8              | 19  | /8B            |
| 9.  | /25             | 20  | /12B           |
| 10  | $/6\mathrm{B}$  | 21  | /15B           |
| 11a | /8              | • . |                |
| 11b | /14             | • . |                |
|     |                 |     |                |