
Graph Theory CMSC-27500 Final midterm. June 2, 2015
Instructor: László Babai

Name:

Show all your work. Do not use book, notes, or scrap paper. The use of electronic devices
is strictly prohibited.

Write your answers in the space provided. You may continue on the reverse. The BONUS
problems are underrated, solve the non-BONUS problems first.

This test contributes 42% to your course grade.

As usual, G = (V,E) is a graph or a digraph, n denotes the number of vertices, m the number
of edges. If G is a graph then α(G) denotes the independence number (maximum number of
independent vertices), ω(G) the clique number (maximum number of pairwise adjacent vertices),
χ(G) the chromatic number, ν(G) the matching number (maximum number of disjoint edges), and
τ(G) the covering number (minimum number of vertices that hit every edge). We usually omit G
from the notation and just write ν for ν(G), α for α(G), etc.

When referring to a bipartite graph G = (V,E), we shall assume a bipartition V = R ∪̇B (R: “red
vertices,” B: “blue vertices”; the dot indicates that these sets are disjoint). We say that R can be
(fully) matched if ν = |R|. For a set S ⊆ R let N(S) denote the set of neighbors of S, i. e., the set
of vertices v ∈ B such that (∃w ∈ S)(v ∼ w). Recall that the Marriage Theorem says: R can be
fully matched if and only if for every subset S ⊆ R we have |S| ≤ |N(S)|.

1. (30 points) State a “good characterization” theorem in as many of the following topics as you
can: (a) perfect matchings in general (not necessarily bipartite) graphs; (b) DAGs; (c) graph
coloring (but not “2-colorability”); (d) Hamiltonicity; (e) Ramsey Theory; (f) planarity; (g)
internally vertex-disjoint paths. — State at most one result from each area. You gain points
by precisely stating relevant results, including the name of the person whose result it is; you
lose points by stating results that are not good characterizations.
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2. (10 points) True or false: “Let s 6= t be vertices of the graph G. If each pair of s − t paths
shares an edge then all s − t paths share an edge.” Clearly state your answer and prove it.
You may use a result proved in class; state the result.

3. (22 points) For every k ≥ 3, construct a graph that does not contain Kk, has chromatic
number ≥ k + 1, and has O(k) vertices. (Hint: first solve for k = 3.)

4. (25+13 points) Let G = (V,E) be a bipartite graph with bipartition V = R ∪̇B. Assume
|R| = |B| = t ≥ 1 and let R = {u1, . . . , ut} and B = {v1, . . . , vt}. Define the t × t incidence
matrix M = (mij) by setting mij = 1 if {ui, vj} ∈ E and mij = 0 otherwise. (a) Prove:
If det(M) 6= 0 then M has a perfect matching. (b) Prove that the converse is false; give a
small counterexample.
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5. (25+12 points) For a graph G and a positive integer t let PG(t) denote the number of functions
f : V → [t] that are legal colorings of G. (a) Prove that PG(t) is a polynomial (called the
“chromatic polynomial” of G). (b) Compute PT (t) when T is a tree. Prove your answer.

6. (6+6+5+12B points) (a) Let DAG(G) denote the number of acyclic orientations of G. Prove:
DAG(G) ≤ 2m. (b) Characterize those graphs for which DAG(G) = 2m. (c) Compute
DAG(Cn). (d) (BONUS) Prove: PG(−1) = (−1)n DAG(G) (Stanley’s Theorem).

7. (BONUS: 6B+12B points) (a) Prove: a graph G is k-colorable if and only if it has an acyclic
orientation H such that H has no paths of length k. (b) Prove: If G has an orientation L
such that L has no paths of length k then G is k-colorable. (Note that L may have cycles.)
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8. (16+8 points) Consider the Erdős–Rényi model Gn,p of random graphs: on a fixed set of n
vertices, we decide adjacency by flipping a biased coin that gives “adjacent” with probability
p independently for each pair of vertices. (a) Determine the expected number of 5-cycles.
Your answer should be a very simple formula. Do not prove. (b) Prove: For t ≥ 3, the
expected number of t-cycles is less than (np)t.

9. (25 points) Let G be a random graph from the Gn,p distribution where 0 < p ≤ 1/2. Prove:
almost surely

α(G) ≤ 1 +
2 lnn

p
.

10. (BONUS: 6 points) Use the previous two problems to prove Erdős’s theorem: For all g and k
there exists a graph of girth ≥ g and chromatic number ≥ k.
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11. (8+14 points) Prove: for every ε > 0, almost all graphs satisfy (a) ω < nε and (b) χ > n1−ε.
(You may use other problems from this test.)

12. (4+30+7B points) A graph is tough if for every non-empty subset S ⊆ V , the graph G − S
has at most |S| connected components. (a) Prove: If G is Hamiltonian (has a Hamilton
cycle) then G is tough. (b) Prove: if G is a regular graph of degree d ≥ 1 and G is d-edge-
connected then G is tough. (c) (BONUS) Prove: there exists a tough graph that is not
Hamiltonian. — Hint: the Petersen graph. Draw it with a 3-fold rotational symmetry to cut
down the number of cases.
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13. (25 points) Prove: every graph G has a 3-colorable subgraph with ≥ 2m/3 edges. Use the
probabilistic method. State the size of your sample space. Give a clear definition of your
random variables.

14. (27 or 16 points) Prove ONE of the following. (a) 9 → (4, 3). (b) 10 → (4, 3). — Use
without proof that 6→ (3, 3).

6



15. (28 points) Prove that every triangle-free planar graph is 4-colorable. Use the fact that every
triangle-free planar graph with n ≥ 3 vertices has m ≤ 2n − 4 edges. Make your solution
algorithmic; make it clear in what order you assign colors to the vertices.

16. (5+25 points) (a) State Tutte’s necessary and sufficient condition for the existence of a perfect
matching. Do not prove. (b) Deduce the Marriage Theorem (see Preamble) from Tutte’s
Theorem under the assumption |R| = |B| (the special case when the Marriage Theorem
guarantees a perfect matching).
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17. (15+8+6B points) Let G be a graph. Recall that ν ≤ τ ≤ 2ν. (a) Find a non-bipartite
graph satisfying τ = ν = 2. (b) For every k ≥ 1 find a connected graph G such that
ν = k and τ = 2k. Just state the examples, do not prove. (c) (BONUS) Find a triangle-free
non-bipartite graph with τ = ν = 3. [Typo corrected after test; originally the request was
τ = ν = 2, which is impossible.]

18. (28 or 18 points) Prove ONE of the following: (a) If the graph G does not contain K3,3 as a
subgraph then m = O(n5/3). (b) If G does not contain K2,3 then m = O(n3/2).
(Note: these are special cases of a more general theorem by Kőváry, Turán, and Sós.) [Two
bad typos corrected after the test; originally the exponents stated were 2/3 and 1/2]

8



19. (BONUS: 8 points) A digraph is called Eulerian if for each vertex v we have deg+(v) =
deg−(v). Prove: If an Eulerian digraph is weakly connected then it is strongly connected.
(“Weakly connected” means connected as an undirected graph (ignoring the orientation of
the edges).)

20. (BONUS: 12 points) Recall Turán’s graph T (n, k): it has n vertices divided up into k parts
V1, . . . , Vk as evenly as possible; two vertices are adjacent exactly if they don’t belong to the
same part. Let m(n, k) denote the number of edges of T (n, k). — Prove Turán’s Theorem:
If G 6⊇ Kk+1 then m ≤ m(n, k).

21. (BONUS: 15 points) Prove that Nagy’s explicit Ramsey graph demonstrates(
v
3

)
6→ (v+ 1, v+ 1). Recall the construction: the n =

(
v
3

)
vertices are labeled by 3-subsets of

[v]; the vertices corresponding to subsets A and B are adjacent if |A ∩B| = 1.
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!!! FOR GRADERS ONLY — DO NOT WRITE ON THIS PAGE !!!

1. /30

2. /10

3. /22

4a /25

4b /13

5a /25

5b /12

6a /6

6b /6

6c /5

7a /6B

7b /12B

8a /16

8b /8

9. /25

10 /6B

11a /8

11b /14

12a /4

12b /30

12c /7B

13 /25

14 /27

15 /28

16a /5

16b /25

17a /15

17b /8

17c /6B

18 /28

19 /8B

20 /12B

21 /15B

• .

• .
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