Graph Theory CMSC-27500 Third Quiz. May 5, 2015 Instructor: László Babai | Name: | |---| | Show all your work. Do not use book, notes, or scrap paper. Write your answers in the space provided. You may continue on the reverse. The Bonus problems are underrated, solve | | the non-Bonus problems first. | | This quiz contributes 7% to your course grade. | | You may use the following results proved in class. As usual, n denotes the number of vertices, m the number of edges, $\alpha(G)$ the independence number (maximum number of independent vertices), $\omega(G)$ the clique number (maximum number of pairwise adjacent vertices), and $\chi(G)$ the chromatic number of the graph G . | | Theorem 1 (Erdős). For almost all graphs G we have $\alpha(G) \leq 1 + 2\log_2 n$. | | Theorem 2 (Kőváry–Turán–Sós). If the graph G has no 4-cycles then $m=O(n^{3/2})$. | | 1. (10 points) Let $r \geq 2$. True or false: If the graph G does not contain K_{r+1} then G is r -colorable. — Clearly state and prove your answer. Your proof should be explicit; no results from class should be used. Note that this is a separate question for every r ; solving it for a particular value of r earns you partial credit. (Hint: try $r = 2, 3$ first.) | | 2. (8 points) What is the probability that a random tournament on a given set of n vertices is a DAG? Your answer should be a very simple formula. Do not prove. | | 3. (5 points) For every $k \geq 1$ find a <u>connected</u> graph G such that $\nu(G) = k$ and $\tau(G) = 2k$. (Notation: $\nu(G)$ denotes the matching number (maximum number of disjoint edges); $\tau(G)$ denotes the covering number (minimum number of vertices that hit every edge).) Just state | the examples, do not prove. 4. (20 points) Prove: If the graph G has no 4-cycles then $\chi(G) = O(\sqrt{n})$. 5. (21 points) Prove: for almost all graphs G we have $\chi(G) > (\omega(G))^{100}$. (See notation in preamble.) 6. (6 points) Prove: "half of every graph is bipartite." More precisely, let G=(V,E) be a graph. Prove that there exists a set $F\subseteq E$ such that $|F|\geq |E|/2$ and the graph H=(V,F) is bipartite. Use the probabilistic method. State the size of the sample space of the experiment you use. 8. (BONUS: 8 points) Prove: If the graph G has no 5-cycles then $$\chi(G) = O(\sqrt{n})$$. 9. (BONUS: 8 points) Prove: If every vertex of G has degree $$\geq n/2$$ then G is Hamiltonian. 10. (BONUS: 8 points) Fix an integer $$r \ge 5$$. Construct a graph G such that (a) $\chi(G) = 6$ (b) for every edge e we have $\chi(G-e) = 5$ (c) every vertex of G has degree $\ge r$. Hint. Assume r is odd. Make G have $2(r-2)$ vertices and be regular of degree r .