Graph Theory CMSC-27500 Fourth Quiz. May 19, 2015 Instructor: László Babai | Name: | |--| | Show all your work. Do not use book, notes, or scrap paper. Write your answers in the space provided. You may continue on the reverse. The Bonus problems are underrated, solve | | the non-Bonus problems first. This quiz contributes 7% to your course grade. | | As usual, $G=(V,E)$ is a graph or a digraph, n denotes the number of vertices, m the number of edges. If G is a graph then $\nu(G)$ denotes its matching number (maximum number of disjoint edges), and $\tau(G)$ the covering number (minimum number of vertices that hit every edge). You may use the following results proved in class or assigned as an exercise: If G is a planar graph and $n \geq 3$ then $m \leq 3n-6$. If, in addition, G is triangle-free, then $m \leq 2n-4$. | | 1. (4 points)[1 minute] What is the probability that a random tournament on a given set of n vertices is a DAG? Your answer should be a very simple formula. Do not prove. | | 2. (4 points) [1 minute] For every $k \geq 1$ find a <u>connected</u> graph G such that $\nu(G) = k$ and $\tau(G) = 2k$. Just state the examples, do not prove. | | 3. (7 points) [2 minutes] Prove: there exists a graph that is not planar and has girth 100. (Recall: the <i>girth</i> is the length of the shortest cycle.) Describe the example, do not prove. | | | | | | | 4. (8 points) [3 minutes] True or false: "Let $s \neq t$ be vertices of the graph G. If each pair of s-t paths shares an edge then all s-t paths share an edge." Clearly state your answer and prove it. You may use a result proved in class; state the result. 5. (8 points) Find a graph G with special vertices $s \neq t$ such that (a) there exist 5 internally vertex-disjoint s-t paths; but (b) there is an s-t path P such that no s-t path is internally disjoint from P (so P alone is a maximal set of internally vertex-disjoint s-t paths). Draw a clear picture, highlighting P. No explanation is needed. 6. (13 points) Let (G, s, t, c) be a network where G = (V, E) is a digraph, $s \neq t$ are two vertices, and $c: E \to \mathbb{R}$ is the capacity function. Prove that G has a sub-DAG H containing s and t such that the value of the maximum $s \to t$ flow is the same for G and H. 7. (8+8 points) Prove: (a) Every planar graph has a vertex of degree ≤ 5 . (b) Prove: every planar graph is 6-colorable. You may use results proved in class; state the results used. 8. (10 points) Prove: There exists a connected regular graph G of degree 100 such that the connectivity of G is $\kappa(G) = 1$. - 9. (BONUS: 9 points) Let $k \ge 4$. Prove that the $k \times k$ toroidal grid is not planar. You may use any result stated in class or in homework sheets. State what you use. The solution should be only a couple of lines. - 10. (BONUS: 8 points) A bridge in a connected graph G is an edge e such that G-e is disconnected. (For instance, every edge of a tree is a bridge.) Prove: if G is a regular graph of degree 100 (i. e., every vertex has degree 100) then then G cannot have a bridge. - 11. (BONUS: 5+5 points) Prove: (a) Almost all graphs are not planar. (b) For all sufficiently large n, the probability that a random graph on n vertices is planar is less than $2^{-0.49n}$. - 12. (BONUS: 5 points) Prove: If both the graph G and its complement \overline{G} are planar then $n \leq 10$. - 13. (BONUS: 5 points) Let G = (V, E) be a k-connected graph and S, T two disjoint subsets of V of size k each. Prove: there exist k disjoint paths each connecting a vertex of S to a vertex of S. (Note: these paths must be disjoint, not just internally disjoint.) You may use results proved in class; state the results used. - 14. (BONUS: 2+9 points) (a) Find a planar graph that is regular of degree 3 and has girth 5. (b) Prove: If every vertex of the graph G has degree ≥ 3 and G has girth ≥ 6 then G is not planar. (The girth is the length of the shortest cycle.)