Lecture Notes of Honors Combinatorics

Michael J. Cervia

Spring 2016

WARNING: With the exception of the class of May 26, these notes have NOT been proofread by the instructor. They contain many mistakes. Read these notes critically; use them at your own risk.

1 Tuesday, March 29, 2016

Things expected to be known:

- modular arithmetic (congruences modulo m)
- asymptotic notation $a_n \sim b_n \iff a_n = O(b_n)$
- finite probability spaces: expected value and independence of random variables
- basic linear algebra (rank, determinant, eigenvalues) [See online lecture notes.]

Graph: G = (V, E), where V is the set of **vertices** (singular: vertex) and E is the set of **edges** (unordered pairs of vertices)

(e.g.,
$$V = \{1, ..., 5\}, E = \{\{1, 2\}, \{1, 3\}, \{1, 5\}, \{2, 3\}, \{3, 4\}, \{4, 5\}\}; |V| = 5, |E| = 6\}$$

Bipartite graph: $V = V_1 \cup V_2$

Hypergraph:
$$\mathcal{H} = (V, \mathcal{E}), \mathcal{E} = \{A_1, \dots, A_m\}, A_i \subseteq V, [A_i = A_j \text{ is permitted.}]$$

Hypergraph \iff bipartite graph; edges: if $v_i \in A_j$

If
$$x \in V$$
, then $deg(x) := \#\{i \mid x \in A_i\}$

Handshake Theorem:
$$\sum_{x \in V} \deg(x) = \sum_{i=1}^{m} |A_i|$$

Proof: Count pairs; ["Actuary Principle"] $\#\{(x,i)|x\in A_i\}$

$$=: \sum_{x} \deg(x) \text{ (counting by } x)$$
$$=: \sum_{i} |A_{i}| \text{ (counting by } i)$$

Incidence matrix:
$$n \times m$$
 matrix, $M_{ij} = \begin{cases} 1 \text{ if } x_i \in A_j \\ 0 \text{ otherwise} \end{cases}$

Regular Hypergraph: if every vertex has same degree $r \iff r$ -regularity

Uniform Hypergraph: every edge has same number of sites $k \iff k$ -uniformity

Graph (alt.): 2-uniform hypergraph without multiple edges

Notation: n = #vertices, m = #edges

r-uniform, k-regular hypergraph $\implies nk = mr$; for graphs, $n \cdot k = 2m$

Hypergraph without multiple edges then $m \leq 2^n$

Intersecting hypergraph: every pair of edges intersects

HW: For intersecting hypergraphs, prove $m \leq 2^{n-1}$ (2-line proof)

k-uniform hypergraph: maximum $\#\text{edges} = \binom{n}{k}$

k-uniform, intersecting: $\max = \binom{n-1}{k-1}$? - Only half of the time!

HW: For every $n \geq 3$ and a lot of values of k: find intersecting k-uniform hypergraphs with $> \binom{n-1}{k-1}$ edges (i.e. lot of values $\iff \to \infty$ as $n \to \infty$)

CH: If \mathcal{H} is regular, of deg ≥ 1 , k-uniform, intersecting $\implies k > \sqrt{n}$

Def: A finite projective plane is a hypergraph such that

- (i) all pairs of points have exactly one line (i.e. hyperedge) through them
- (ii) all pairs of lines are intersecting at exactly one point
- (iii) (nondegeneracy axiom) ∃ four points with no 3 on a line

(e.g., Fano plane, 3-regular, 3-uniform, with 7 points and 7 lines)

[Turn in HW problems. CH problems have no strict deadline, but they are over when discussed in class; email when working on them as a warning, so Babai will avoid discussing in class. Don't turn in DO problems]

DO: A finite projective plane (alt.) is:

- (a) regular (r-regular)
- (b) uniform (k-uniform)
- (c) k = r := n + 1
- (d) #points = #lines = $n^2 + n + 1$

Projective geometry over \mathbb{R} :

e.g., $x := (x_1, x_2, x_3) \sim \lambda(x_1, x_2, x_3) =: \lambda x;$

points are equivalence classes of triples.

Take $\mathbb{R}^3 - \{0\}$. point p has coordinates $(x_1, x_2, x_3) \to$ homogeneous coordinates

Projective line: corresponds to 2-dim subspace of \mathbb{R}^3 , homogeneous coordinates of a line: a; $a \cdot x = a_1 x_1 + a_2 x_2 + a_3 x_3 = 0$

 \mathbb{F} , Finite Field: finite #elements with 2 operations $+, \cdot$ satisfying usual axioms (like in

 $|\mathbb{F}| = q$: A finite field of order q exists $\iff q = p^k$ prime power e.g., $3 \cdot 3 \equiv 0 \mod 9$

Galois Fields (finite fields), $GF(q) = \mathbb{F}_q$; $\forall q, \exists !$ Galois field of order q

PG(2,q): projective plane over GF(q)

#points:

 $\begin{aligned} |\mathbb{F}_q^3| &= q^3 \text{ (\#triples } (x_1, x_2, x_3)) \\ |\mathbb{F}_q^3 - \{\underline{0}\}| &= q^3 - 1 \\ |\mathbb{F}_q - \{0\}| &= q - 1 \text{ size of equivalence classes} \end{aligned}$

#points = #lines = #equivalence classes = $\frac{q^3 - 1}{q - 1} = q^2 + q + 1$

OPEN: For what values of n (i.e. set of these numbers named \mathcal{P}) does there exist a projective plane of order n?

We know: If q is a prime power, then $q \in \mathcal{P}$

Also know: infinitely many values of $n \in \mathcal{P}$

No n that is not a prime power is known to belong to \mathcal{P}

Smallest n of unknown status: n = 12

 $6 \notin \mathcal{P} \sim 1990$, tedious

 $10 \notin \mathcal{P} \sim 199X$

 \mathbb{F}_p , p prime: field; $\mathbb{F}_p[i] = \{a + bi \mid a, b \in \mathbb{F}_p, i^2 + 1 = 0\}$

Likewise, $\mathbb{C} = \mathbb{R}[i]$

HW: For what p is $\mathbb{F}_p[i]$ a field? \iff When are there no zero-divisors: $z_1z_2=0$ \implies $z_1 = 0 \text{ or } z_2 = 0$

Experiment! Discover simple pattern by looking at primes < 30

$\mathbf{2}$ Thursday, March 31, 2016

Tuesday, April 5: QUIZ

TA: Joseph Tsong

Office hr: Monday 4:30-5:30, Young 208A

 $\mathcal{P} := \{ \text{orders of finite projective planes} \}.$ If q is a prime power field then $q \in \mathcal{P}$.

Bruck-Ryser Theorem:

If $n \equiv 1$ or $2 \mod 4$ and $n \in \mathcal{P}$, then $\exists a, b : n = a^2 + b^2$. Bruck-Ryser gives us only: in \mathcal{P} : 2, 3, 4, 5, 7, 8, 9, 11, 13 not in \mathcal{P} : 6, 14

don't know: 12

no 10

Latin Square, $n \times n$: [i.e., solved Sudoku puzzle and superpositions thereof]

3	1	2		11	23	32		1	2	3		1	3	2
2	3	1	,	22	31	13	=	2	3	1	&	2	1	3
1	2	3		33	12	21		3	1	2		3	2	1

E.g., Euler: "36 officers' problem" wanted a pair of orthogonal 6×6 Latin squares

HW: If n is odd ≥ 3 , then \exists pair of $n \times n$ orthogonal Latin squares.

DO: If \exists pair of $k \times k$ orthogonal Latin squares and a pair of $l \times l$ orthogonal Latin squares, then \exists pair of $kl \times kl$ orthogonal Latin squares.

DO: If q is a prime power ≥ 3 , then \exists pair of orthogonal Latin squares

... If $n \ge 3$ and $n \not\equiv 2 \mod 4$, then \exists pair of orthogonal Latin squares.

Theorem: \nexists pair of 6×6 orthogonal Latin squares.

Bose-Shrikhande-Parker: 6 is the only exception.

DO: (a) If $\exists m$ pairwise orthogonal $n \times n$ Latin squares, then $m \le n-1$ (b) $\exists n-1$ pairwise orthogonal $n \times n$ Latin squares, then \exists projective plane of order n

DO: Dual of a projective plane is a projective plane.

"Possibly degenerate projective plane"

- (i) every pair of points is connected by a line
- (ii) every pair of lines intersects

(iii) there is a triple of points not on a line.

DO*: the only degenerate projective planes are a bunch of points on a line all also having a line through another point off to the side of the main line.

 \mathcal{H} : k-uniform intersecting hypergraph

If \mathcal{H} is a possibly degenerate projective plane, p: point, l: line

Lemma:
$$p \cdot l \implies \deg(p) = |l|$$

(all lines touch
$$n+1$$
 points: #points = $1 + n(n+1) = n^2 + n + 1$)

Galois plane over \mathbb{F}_q : points $[a, b, c], a, b, c \in \mathbb{F}_q$ (homogeneous coordinates), not all are zero; $(a, b, c) \sim (\lambda a, \lambda b, \lambda c), \lambda \neq 0$. p: homogeneous coordinates for point p, l: homogeneous coordinates for line l

Claim: p_1, p_2, p_3 not on a line, i.e., if $a \cdot p_i = 0$, i = 1, 2, 3, then $\underline{a} = \underline{0}$.

DO: finish

$$p - l$$
 if $p \cdot l = 0$ (i.e., $\sum p_i l_i = 0$)

CH: Fundamental Theorem of Project Geometry: If $(p_1, ..., p_4)$ and $(q_1, ..., q_4)$ are quadruples of points in $PG(2, \mathbb{F})$ in general position (no 3 on a line), then $\exists f$: {points} \to {points} collineation such that $f(p_i) = q_i$ (collineation: $\exists f^{-1}$, preserves collinearity)

Theorem ((Paul) Erdös - (Chao) Ko - (Richard) Rado): if $k \le n/2$ then $m \le \binom{n-1}{k-1}$

Lemma: \mathcal{H} regular, uniform hypergraph $\mathcal{H} = (V, \mathcal{E}), 0 \leq \alpha \leq 1, R \subseteq V$ "red vertices." Assume $\forall A \in \mathcal{E}, |R \cap A| \leq \alpha k$. Then, $|R| \leq \alpha n$.

DO: False if we omit regularity:

Prove \exists uniform hypergraph without isolated (i.e., deg = 0) vertices (i.e., $\cup \mathcal{E} = V$) and $R \subseteq V$ such that

- (a) $\forall A \in \mathcal{E}, |R \cap A| \leq k/10$ and
- (b) $|R| \ge 9n/10$.

"Lubell's permutation method"

 $S = {\sigma : \text{cyclic permutations of } V}$

 $\binom{V}{k}$ =set of all k-subsets of V

edge: A is an arc on σ ; "A and σ are compatible"

$${\binom{\binom{n-1}{k-1}}/\binom{n}{k}} = k/n$$

DO: Lemma: At most k edges of \mathcal{H} are compatible with a given σ (assuming $k \leq n/2$)

3 Tuesday, April 5, 2016

Recall: If \mathcal{H} is simple, intersecting, then $m \leq 2^{n-1}$. (Simple(st)) Proof: Take V as $A \cup \bar{A}$. Since A, \bar{A} are disjoint, only one can be in the set of hyperedges we construct; we are using Pigeonhole Principle.

Erdös-Ko-Rado: If $k \leq n/2$, intersecting simple k-uniform hypergraph $\mathcal{H} = (V, \mathcal{E})$, then $m \leq \binom{n-1}{k-1}$.

Lemma 1: $\mathcal{L} = (W, \mathcal{F})$, k-uniform, regular, red verices $R \subseteq W$, and $0 \le \alpha \le 1$. If every edge has $\le \alpha k$ red vertices then $|R| \le \alpha n$.

Suppose hypergraph is r-regular. Look at $\{(V, E) \mid v \in R\}$; here, $|\{(V, E) \mid v \in R\}| = r|R| \le m\alpha k$, so $|R| \le \alpha mk/r = \alpha n$ (recall mk = rn).

Lemma 2: n points in cycle and k-arc(s) where $k \leq n/2$. Set \mathcal{C} of k-arcs that pairwise intersect. Prove: $|\mathcal{C}| \leq k$.

Lemmmas 1 & 2 \Longrightarrow EKR: take a hypergraph with $\binom{n}{k}$ vertices and (n-1)! edges, which correspond to the cyclic permutations σ of the labels on the vertices. Then, define edges $A \subseteq V$, |A| = k and incidence by: (σ, A) incident if A is an arc on σ . Let us call this new hypergraph \mathcal{L} . \mathcal{L} is n-uniform (there are n possible arcs) and regular (by symmetry). Red points can be defined here as the edges in \mathcal{E} . By Lemma 2, $\leq \alpha = k/n$ proportion of every edge in \mathcal{L} is red. $\therefore |\mathcal{E}| = |R| \leq |W|k/n$. Here, $|W| = \binom{n}{k}$; $\therefore m = |\mathcal{E}| = |R| \leq \binom{n}{k}k/n = \binom{n-1}{k-1}$. QED (This is Lubell's permutation method.)

Polarity in a projective plane $\mathcal{P} = (P, L, I)$; where $P = \{\text{points}\}, L = \{\text{points}\}, \text{ incidence relation } I = \{(p, l)|p-l\}$; is $f: P \to L$, a bijection, such that $\forall p, q \in \mathbb{P}, p-f(q) \iff q-f(p)$.

HW: Prove: every Galois plane has a polarity.

Finite probability spaces, (Ω, \mathbb{P}) :

```
\begin{split} \Omega \text{ "sample space": nonempty set,} \\ \mathbb{P} &= \text{probability distribution over } \Omega, \\ \mathbb{P} : \Omega \to \mathbb{R} \text{ such that } \forall a \in \Omega \ \mathbb{P}(a) \geq 0 \\ a \text{ is an elementary event, } \mathbb{P}(a) \text{ is a probability, and } \sum_{a \in \Omega} \mathbb{P}(a) = 1. \end{split}
```

Outcomes of an experiment: e.g., n coin flips HTTTHTHHT: $|\Omega| = 2^n$, poker hand 5 cards out of the standard deck of 52 cards $\binom{52}{5}$.

Event: $A \subseteq \Omega$, $\mathbb{P}(A) := \sum_{a \in A} \mathbb{P}(a)$

Uniform distribution: $\forall a \in \Omega, \mathbb{P}(a) = 1/n, n = \Omega.$

If uniform, then $\mathbb{P}(A) = |A|/|\Omega| = \#\text{``good cases''}/\#\text{``all cases''}$. $\binom{n}{k}/2^n = \mathbb{P}(k \text{ heads in } n \text{ fair coin flips})$.

Random variable over the probability space Ω, \mathbb{P} is a function $X : \Omega \to \mathbb{R}$

DEF: **Expected (or Mean) Value** of a random variable $E(X) = \sum_{a \in \Omega} X(a) \mathbb{P}(a) = \sum_{y \in \text{Range}(X)} y \cdot \mathbb{P}(x = y)$ weighted average of the values of X.

$$"X=y"=\{a\in\Omega\mid X(a)=y\}$$

DO: $\min X \leq E(X) \leq \max X$.

Indicator variable: takes value 0 or 1, equivalent to events

$$\theta_A$$
: indicator of event A , $\theta_A(a) = \begin{cases} 1 \text{ if } a \in A \\ 0 \text{ if } a \notin A. \end{cases}$

 $|\Omega| = n \implies$ there are 2^n indicator variables.

$$E(\theta_A) = 1 \cdot \mathbb{P}(\theta_A = 1) + 0 \cdot \mathbb{P}(\theta_a = 0) = \mathbb{P}(A), \text{ i.e. } "\theta_A = 1" = A \text{ and } \mathbb{P}(\theta_A = 1) = \mathbb{P}(A).$$

DO: Linearity of expectation: If X_1, \ldots, X_k are random variables over (Ω, \mathbb{P}) and $c_1, \ldots, c_k \in \mathbb{R}$, then $E(\sum c_i X_i) = \sum c_i E(X_i)$

DO: Use this to prove: E(#heads in n coin flips) = n/2. Hint: write $X = \sum_{i=1}^{n} Y_i$, Y_i : indicator of event " i^{th} flip in heads"

Random **permutations** of a set of S of n elements, bijections $\pi: S \to S$. $|\Omega| = n!$.

Notation: $[n] = \{1, \dots, n\}.$

E.g.,
$$S = [10], \pi(S) = \{7, 5, 4, 6, 1, 10, 8, 9, 2, 3, 11\}$$

HW: Let X be the length of the cycle through point 1. $\mathbb{P}(X = k) = 1/n$.

$$\mathbb{P}(X=1) = (n-1)!/n! = 1/n, \mathbb{P}(X=n) = (n-1)!/n! = 1/n.$$

HW: Let Y: #edges. Prove: $E(Y) \sim \ln n$

4 Thursday, April 7, 2016

Consider the cardgame Set, with 81 cards each endowed 4 attributes (i.e. $\operatorname{card} \in \mathbb{F}_3^4$): ternary color, number (1,2,3), shape (circle, diamond, squiggle), shading (completely shaded, partially shaded, not shaded)

Set: 3 cards such that in each attribute, either each card same or all different, i.e. $SET = \{(\underline{x}, y, \underline{z}) \mid \text{distinct components, such that } \underline{x} + y + \underline{z} = \underline{0}\}$

Note that $\mathbb{F}_3^n := \{(x_1, \dots, x_n) \mid x_i \in \mathbb{F}_3\}$

HW: n-dimensional "SET" is a 3-uniform hypergraph with 3^n vertices. Assuming that it is regular, what is the degree of its vertices?

 $\mathcal{H} = (V; A_1, \dots, A_m), W \subseteq V$ independent if $\forall i, A_i \not\subseteq W, \alpha(\mathcal{H})$ =independence number=size of largest independent set

 $\alpha_k := \alpha(n\text{-dim SET game})$

HW: $\alpha_{k+l} \ge \alpha_k \alpha_l$

DO: **Fekete's Lemma**: If $\{a_n\}$ is super multiplicative $(a_n > 0)$, i.e. $a_{k+l} \ge a_k a_l$, then $\exists \lim_{n\to\infty} \sqrt[n]{a_n} = \sup_{n} \{\sqrt[n]{a_n}\}$

Corollary: $\exists \lim \sqrt[n]{\alpha_n} = \sup \sqrt[n]{\alpha_n} =: L; 2^n \le \alpha_n \le 3^n, 2 \le L \le 3$

HW: L > 2. (You may use information on ordinary SET game on web.)

OPEN: L > 3? Best (Meshulam): $\alpha_n < 2 \cdot 3^n/n$. (Proof: character of finite abelian groups.)

 χ : chromatic number

legal coloring: no edge becomes monochromatic of vertices

 \mathcal{H} hypergraph, **optimal coloring**: $\chi(\mathcal{H}) = \min \# \text{colors}$ in a legal coloring

HW: (a) $\alpha(\mathcal{H})\chi(\mathcal{H}) \geq n$.

(b) use this to prove: $\chi(n\text{-dim SET}) \to \infty$ (use a result stated)

DO: $\chi(\text{FANO}) = 3$

DO MAYBE: $\chi(PG(2,3),PG(2,4))$, where 3 and 4 corresponds to \mathbb{F}_3 and \mathbb{F}_4 , respectively

HW: (a) If \mathcal{H} is k-uniform and $m \leq 2^{k-1}$ $(k \geq 2)$, then $\chi(\mathcal{H}) \leq 2$. (Hint: union bound)

(b) If \mathcal{P} is a projective plane of order $n \geq 5$ then $\chi(\mathcal{P}) = 2$.

Finite probability spaces: $A_1, \ldots, A_t \subseteq \Omega$ events

DO: Union bound $\mathbb{P}(\bigcup_{i=1}^t A_i) \leq \sum_{i=1}^k \mathbb{P}(A_i)$ Proof: induction on t

Events A, B are **independent**: $\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$

A, B, C are independent: pairwise independence and $\mathbb{P}(A \cap B \cap C) = \mathbb{P}(A)\mathbb{P}(B)\mathbb{P}(C)$

DO: Find small probability space and 3 events satisfying $\mathbb{P}(A \cap B \cap C) = \mathbb{P}(A)\mathbb{P}(B)\mathbb{P}(C)$ but not pairwise independence

DO: A and A are independent \iff ?

 A_1, \ldots, A_t are independent if for $I \subseteq [t] = \{1, \ldots, t\}, \ \mathbb{P}(\cap_{i \in I} A_i) = \prod_{i \in I} \mathbb{P}(A_i)$

 2^t conditions $I = \emptyset : \bigcap_{i \in \emptyset} A_i = \Omega, \prod_{i \in \emptyset} A_i = 1$

|I| = 1 true is actually $2^t - t - 1$ conditions

DO: If A_1, \ldots, A_t are independent, then $A_1, \ldots, A_{t-1}, \bar{A}_t = \Omega - A_t$ are independent

 $\therefore \{A^1 = A, A^0 = \bar{A}\}, \text{ then } A_1^{\xi_1}, \dots, A_t^{\xi_t} \text{ are independent for all } \epsilon_i \in \{0, 1\}$

A, B, C independent $\implies A, B \cup C$ independent

DO: Generalize the above to all Boolean combinations \cup , \cap , — with a finite set of events

 X_1, X_2, \ldots, X_t random variables over (Ω, \mathbb{P}) are **independent** if $\forall x_1, \ldots, x_t \in \mathbb{R}, \mathbb{P}(X_1 = x_1, \ldots, X_t = x_t) = \prod_{i=1}^t \mathbb{P}(X_i = x_i)$

DO: If X_1, \ldots, X_t are independent, then all their subsets are independent.

DO: events A_1, \ldots, A_t are independent \iff indicator variables $\theta_{A_1}, \ldots, \theta_{A_t}$ are independent

Markov's Inequality: Suppose X is a positive random variable $X \ge 0$, a > 0. Then $\mathbb{P}(X \ge a) \le E(X)/a$

DO: Prove Markov's Inequality in one line

Variance $Var(X) = E((X - E(X))^2)$. Write m = E(X) for now. Then, we immediately have $Var(X) = E(X^2) - 2mE(X) + m^2 = E(X^2) - m^2 = E(X^2) - E(X)^2$

Corollary (Cauchy-Schwartz inequality): $E(X^2) \ge E(X)^2$

DO: Compare with other forms of the Cauchy-Schwartz inequality

Covariance Cov(X, Y) = E(XY) - E(X)E(Y).

Var(X) = Cov(X, X)

DO: If X, Y are independent, then E(XY) = E(X)E(Y). If X_1, \ldots, X_t are independent, then $E(\prod X_i) = \prod E(X_i)$.

If X, Y independent, then Cov(X, Y) = 0 (i.e., X, Y uncorrelated)

HW: Show X, Y independent \Leftarrow Cov(X, Y) = 0 (Make Ω small)

$$Y = X_1 + \ldots + X_t$$

$$Var(Y) = E(Y^2) - E(Y)^2 = E(\sum_i \sum_j X_i X_j) - \sum_i \sum_j E(X_i) E(X_j)$$
$$= \sum_i \sum_j (E(X_i X_j) - E(X_i) E(X_j)) = \sum_i \sum_j Cov(X_i, X_j)$$

$$= \sum_{i} \operatorname{Var}(X_i) + \sum_{i \neq j} \operatorname{Cov}(X_i, X_j) = \sum_{i} \operatorname{Var}(X_i) + 2 \sum_{i < j} \operatorname{Cov}(X_i, X_j)$$

Random graphs

Erdös-Renyi Model with p = 1/2: fix V, |V| = n. $E(\#\text{edges}) = \binom{n}{2}/2$, $T_n = E(\#\text{triangles})$ (DO: use linearity of expectation)

DO: Find exact formula and find asymptotic value of variance $Var(T_n) \sim a \cdot n^b$, find a, b

5 Tuesday, April 12, 2016

SUBSTITUTE: Prof. Alexander Razborov

Binomial Theorem: $(x+y)^n = \sum_{j=0}^n \binom{n}{j} x^j y^{n-j}$; here, we will more simply write this without y, $(1+x)^n = \sum_{j=0}^n \binom{n}{j} x^j$.

Then, we have $\sum_{j=0}^{n} {n \choose j} = 2^n$, $\sum_{j=0}^{n} (-1)^j {n \choose j} = 0$. More cleverly we could also try $x = \sqrt{3}i = \sqrt{-3}$ to find $(1/2 - i\sqrt{3}/2)^3 = 1$, or equivalently $(1 - i\sqrt{3})^{3m} = \pm 2^{-3m}$.

Now, consider $f'(x) : n(1+x)^{n-1} = \sum_{j=0}^{n} j \binom{n}{j} x^{j-1}$. For example, we find $x = 1 \implies \sum_{j=0}^{n} j \binom{n}{j} = n2^{n-1}$.

Also, we can iterate the formula to obtain $(1+x)^{2n} = \sum_{k=0}^{2n} x^k \sum_{j=0}^k {n \choose j} {n \choose k-j}$, from which we can find ${2n \choose n} = \sum_{j=0}^n {n \choose j} {n \choose k-j}$.

(Formal) **Power series**: $(a_0, a_1, a_2, \dots, a_n, \dots) \to \text{Generating function } G(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \dots + a_n x^n + \dots$

For example, $|a_n| \le ck^n$ where c, k are arbitrary constants. In the case (c, k) = (-1/k, -1/k), we obtain Taylor series

We can do some operations on generating functions:

```
multiply by constants: \alpha G_1(x) add such functions: (G_1(x) + G_2(x)) multiply such functions: (a_0 + a_1x + \ldots)(b_0 + b_1x + \ldots) = (c_0 + c_1x + \ldots), where c_k = a_0b_k + a_1b_{k-1} + \ldots + a_kb_0 (a Recurrent relation). even divide them given G_2(0) \neq 0, a_0 \neq 0: \frac{G_1(x)}{G_2(x)} = \frac{c_0 + c_1x + c_2x^2 + \ldots}{a_0 + a_1x + a_2x^2 + \ldots} = (b_0 + b_1x + b_2x^2 + \ldots)
```

Recall the examples:

$$G(x) = 1 + x/1! + x^2/2! + x^3/3! + \dots + x^n/n! + \dots = e^x$$
 (here $G'(x) = G(x)$) $G(x) = x - x^3/3! + x^5/5! \dots = \sin x$

We have the fact $(1+x)^r = \sum_{j=0}^{\infty} {r \choose j} x^j$ and one from analysis: for arbitrary r we can take $(x^r)' = rx^{r-1}$. Note for arbitrary r, as long as j is an integer, we have ${r \choose j} = \frac{r(r-1)\cdots(r-j+1)}{j!}$. Using these facts we can find that

$$(1+x)^{-n} = \sum_{j=0}^{\infty} {\binom{-n}{j}} x^j = \sum_{j} \frac{(-n)(-n-1)\cdots(-n-j+1)}{j!} x^j$$
$$= \sum_{j} (-1)^j {\binom{n+j-1}{j}} x^j = \sum_{j} (-x)^{-j} {\binom{n+j-1}{n-1}}$$

Replacing i = n + j - 1, we can rearrange to obtain $x^{n-1}(1-x)^{-n} = \sum_{i} x^{i} \binom{i}{n-1}$, an useful formula which we can apply to find:

$$\frac{\frac{1}{1-x}}{\frac{x}{(1-x)^2}} = x + 2x^2 + 3x^3 + \dots + nx^n + \dots$$

$$\frac{x^2}{(1-x)^3} = \frac{2 \cdot 1}{2} x^2 + \frac{3 \cdot 2}{2} x^3 + \frac{4 \cdot 3}{2} x^4 + \dots + \frac{(n+2)(n+1)}{2} x^{n+2} + \dots$$

Here, we have applications to recurrence relations, Fibonacci numbers $(F_0 = 0, F_1 = 1, F_n + F_{n-1})$, and rational functions.

Rational functions: p(x)/q(x), where p,q are polynomial, $\deg p < \deg q$, and $q(x) = 1 - u_1x - u_2x^2 - \ldots - u_dx^d$

$$G(x)q(x) = p(x)$$
; we can obtain $a_k = u_1u_{k-1} + u_du_{k-d}$

Overall, we have determined "Rational functions≡recurrence relations"

$$q(x) = a(x-\lambda_1)(x-\lambda_2)\cdots(x-\lambda_d), \lambda_1,\ldots,\lambda_d$$
 are pairwise distinct. Take $\frac{p(\lambda)}{(x-\lambda_1)(x-\lambda_2)\cdots(x-\lambda_d)} = \frac{\alpha_1}{x-\lambda_1} + \ldots + \frac{\alpha_d}{x-\lambda_d}$ to express generating functions

So, we can approach the Fibonacci sequence $F_n = F_{n-1} + F_{n-2}$ with a formula. Note $\frac{x}{1-x-x^2} = \frac{c_0}{x-\lambda_1} + \frac{c_1}{x-\lambda_2}$. We can obtain $F_n = (\lambda_1^n - \lambda_2^n)/\sqrt{5}$, where $\lambda_1 = (1+\sqrt{5})/2$ and $\lambda_2 = (1-\sqrt{5})/2$

Now, let us consider the Drunkard's/Random Walk: we want to find a_n , the expected number of steps it takes to get Home, which we take to be at the point 0, while we have the drunkard or frog start from a position n. We may find that $a_n = 1 + \frac{a_{n-1} + a_{n+1}}{2}$, so $a_{n+1} = 2a_n - a_{n-1} - 2$, $q(x) = 1 - 2x + x^2 = (1 - x)^2$.

Take a generating function $G(x) = \sum_{n} a_n x^n$ and compute $G(x)(1-x)^2$ which we can expand to recognize as $\frac{-2}{1-x}$.

6 Thursday, April 14, 2016

SUBSTITUTE: Prof. Razborov

Recap: Take a generating function G(x) such that $G(x)(1-x^2)=?+?-2x^2-2x^3-\ldots=L(x)-\frac{2}{1-x}$. So, we write $G(x)=\frac{L(x)}{(1-x)^2}-\frac{2}{(1-x)^3}=\frac{p(x)}{(1-x)^3}$, and note $\frac{1}{(1-x)^3}\approx+\ldots+\binom{n}{3}x^n+\ldots$. Meanwhile, our recurrence relation also gives $a_{n+2}=3a_{n+1}-3a_n+a_{n-1}$. Moreover, we see that our steps needed to get back home converges.

Binary trees: n nodes, $b_n = \#$ trees, and we count the number of branches that go leftward from a node l and those that go rightward k. Then k + l = n - 1. Also, we obtain the recurrence relation $b_n = b_0 b_{n-1} + b_1 b_{n-2} + \ldots + b_{n-1} b_0$.

We can represent this relation with a generating function so that $1 + xG(x)^2 = G(x)$, which has solutions $G_1(x) = \frac{1+\sqrt{1-4x}}{2x}$ and $G_2(x) = \frac{1-\sqrt{1-4x}}{2x}$, but only G_2 is still analytic at x = 0, so we choose this one as our generating function.

Meanwhile, we can write $(1-4x)^{1/2} = \sum_{k=0}^{\infty} (-4)^k \binom{1/2}{k} x^k$. Here, the coefficients are $\binom{1/2}{k} = \frac{(1/2)(-1/2)(-3/2)\cdots}{k!}$ and thus we obtain $b_n = \binom{2n}{n}/(n+1)$, Catalan numbers.

Now, consider the **Young tableau** If we have i_1, \ldots, i_k squares in rows $1, \ldots, k$, respectively, then we can count the total number of representations of the table $i_1 + 2i_2 + 3i_3 + \ldots + ki_k = n$. Equivalently, we can write $x^n = x^{i_1}x^{2i_2}\cdots x^{ki_k} = x^{i_1}(x^2)^{i_2}\ldots (x^k)^{i_k}$. Then we can write a generating function

$$G(x) = \sum_{n} p_{n} x^{n}$$

$$= (1 + x + x^{2} + \dots + x^{n} + \dots)(1 + x^{2} + x^{4} + x^{6} + \dots)(1 + x^{3} + x^{6} + x^{9} + \dots) \cdots$$

$$= \frac{1}{1 - x} \frac{1}{1 - x^{2}} \frac{1}{1 - x^{3}} \cdots \frac{1}{1 - x^{k}} \cdots,$$

i.e. $x^n p_n \leq G(x) = \prod_{k=1}^{\infty} \frac{1}{1-x^k}, x \in (0,1)$, where $p_n \leq \frac{1}{x^n} \prod_{k=1}^{\infty} \frac{1}{1-x^k}$. This implies that $\ln p_n \leq -n \ln x - \sum_{k=1}^{\infty} \ln(1-x^k)$. Note $\ln(1-x) = \sum_j \frac{x^j}{j}$ and $\ln(1-x^k) = \sum_j \frac{x^{jk}}{j}$. We need to sum over such terms: $\sum_{k=1}^{\infty} \sum_{j=1}^{\infty} \frac{x^{jk}}{j} = \sum_{j=1}^{\infty} \frac{1}{j} \sum_{k=1}^{\infty} x^{jk}$. So, we obtain $\ln(1-x^k) = \sum_{j=1}^{\infty} \frac{1}{j} \frac{x^j}{1-x^j}$.

Meanwhile, we have $1 - x^j \ge j(1 - x)x^{j-1} = jx^{j-1} - jx^j$, since $(j-1)x^j \ge jx^{j-1} - 1$. So, $\ln(1 - x^k) \le \frac{x}{1-x} \sum_{j=1}^{\infty} \frac{1}{j^2}$. Thus, $\ln p_n \le -n \ln x - \frac{x}{1-x} = \frac{x}{1-x} \frac{\pi^2}{6}$.

Kruskal-Katona Theorem: $\mathcal{F} \subseteq \binom{[n]}{k}, |\mathcal{F}| = m, \partial \mathcal{F} \subseteq \binom{[n]}{k-1} = \{G \in \binom{[n]}{k-1} \mid \exists F \in \mathcal{F} \text{ such that } G \subseteq \bar{F}\}.$ How small can $\partial \mathcal{F}$ be? If $m = \binom{x}{k}$, where $x \geq k$, then $|\partial \mathcal{F}| = \binom{x}{k-1} = \frac{x(x-1)\cdots(x-k+1)}{k!}$.

The theorem in **Lovasz's form**: For every $m = {x \choose k}, |\partial \mathcal{F}| \ge {x \choose k-1}$.

7 Tuesday, April 19, 2016

For hypergraphs without multiple edges $\mathcal{H} = (V, \mathcal{E})$ and $\mathcal{H}' = (V', \mathcal{E}')$, an **isomorphism** is a bijection $f: V \to V'$ such that $\forall F \subseteq V, F \in \mathcal{E} \iff f(F) \in \mathcal{E}'$. Likewise, \mathcal{H} and \mathcal{H}' are **isomorphic**, i.e. $\mathcal{H} \cong \mathcal{H}'$, if $\exists f: \mathcal{H} \to \mathcal{H}'$ isomorphism.

An **automorphism** of \mathcal{H} is a function $f: \mathcal{H} \to \mathcal{H}$ that is an isomorphism. Equivalently, it is a permutation of V.

DO: #automorphisms of Fano = #hours in a week. Note that this is the 2nd smallest nonabelian simple group. (The smallest is A_5 , since $|A_5| = 60$.)

 S_n : **group** of permutations of [n], symmetric of degree n. $|S_n| = n!$ is the order of the symmetric group. A subgroup $G \leq S_n$ is a **permutation group of degree** n

G is **transitive** if $\forall i, j \in [n], \exists \sigma \in G \text{ such that } \sigma(i) = j$.

 \mathcal{H} is vertex-transitive if $Aut(\mathcal{H})$, the automorphism group, is transitive.

DO: Fano plane is vertex-transitive, as are all other Galois planes.

DO: SET_d is vertex-transitive.

Observation: vertex-transitive \implies regular

DO: regular \iff vertex-transitive. (Find smallest graph with k=2.)

DO: Platonic solids, as graphs, are vertex-transitive, edge-transitive, face-transitive, and in fact flag-transitive

Unrelatedly, note from an earlier HW problem: $\chi(SET_d) \to \infty$ as $d \to \infty$ due to the best lower bound on optimal coloring χ : $\chi \geq n/\alpha \geq 3^d/(2 \cdot 3^d/d) = d/2$, using Meshulam's Theorem.

Also, note events A and B are **disjoint** if $P(A \cap B) = 0$.

DO: Union bound yields equality \iff the events are pairwise disjoint.

This fact is important to note while showing before that

$$P(\text{illegal coloring}) \leq \sum_{E \in \mathcal{E}} P(E \text{ monochromatic}) = m/2^{k-1} \leq 1$$

DO: If a projective plane has order ≥ 3 , then $\chi = 2$.

Also, returning to the drunkard's problem: note that, if the drunkard takes n steps, then, in order to get home (initial position) n must be even, $P(\text{getting home at the } 2n^{\text{th}} \text{ step}) = {2n \choose n}/2^{2n}$.

Also, we can find that a walk (x-y graph of location vs. time) will cross the x axis a certain number of times. Each segment between closest times at which the drunkard reaches the x axis will have a twin path could have been taken in that give walk, i.e. the same path reflected about the x axis. This **reflection principle** implies that, instead of counting $\binom{2n-2}{n-1}$ non-crossing walks, we can neglect $\binom{2n-2}{n}$ walks. More precisely,

$$\# \text{non-crossing walks} = \frac{\binom{2n-2}{n-1} - \binom{2n-2}{n}}{\binom{2n-2}{n-1}} = 1 - \frac{\binom{2n-2}{n}}{\binom{2n-2}{n-1}} = 1 - \frac{n-1}{n} = \frac{1}{n}.$$

Thus, we find the Catalan numbers $\binom{2n-2}{n-1}/n$. (We can shift using n=n'+1 to obtain the numbers' usual formula.)

DO:
$$\binom{2n}{n}/2^{2n} \sim 1/\sqrt{\pi n}$$
 (Note $2^{2n} = \sum_{k=0}^{2n} \binom{2n}{k}$.)

 $P(\text{getting back in } 2n \text{ steps for first time}) = \frac{1}{n} {2n \choose n} / 2^{2n} \sim 1 / \sqrt{\pi n^3}$

HW: E(#steps for drunkard to get home for first time) asymptotically. [You can use Stirling's formula.]

8 Thursday, April 21, 2016

Erdös-Szekeres: $\forall a_1, a_r, a_{kl+1} \in \mathbb{R}$,

- (i) \exists increasing subsequence of length k+1
- or (ii) \exists non-increasing subsequence of length l+1

Need kl pigeon holes: $\{(i,j) \mid 1 \leq i \leq k, 1 \leq j \leq l\}$. Assume (i) and (ii) fail. Consider a map of indices to pigeonholes $r \mapsto (i,j)$. We want i = length of longest increasing subsequence ending in a_r and j = length of largest non-increasing subsequence ending in a_r . Suppose we map $a_r \mapsto (i,j)$ and $a_s \mapsto (i',j')$.

Case 1:
$$a_r < a_s$$
. Then $i' \ge i + 1$.
Case 2: $a_r \ge a_s$. Then $j' \ge j + 1$.

Erdös took Prof. Babai, at 16, to his mother's home for lunch once, as Babai was amongst the "epsilons" of rising mathematicians. He asked Babai a first test question: $A \subseteq \{1, \ldots, 2n\}$; what is the smallest size of A such that it certainly has two consecutive elements? Incidentally, the prodigy P'osa was an epsilon in 7th grade and solved the same question quickly, only hesitating for a moment after raising his spoon while eating. There was a second problem Erdös would ask, whose answer was that one of the elements of A divides another.

 $\mathcal{H} = \{V; A_1, \dots, A_m\}, A_i \subseteq V.$ If $i \neq j$, then $|A_i \cap A_j| = 1$. Find max m as a function of n.

Easy attempts: Consider edges that are 2-sets all with one vertex of mutual intersection, giving n-1 edges; we can then add an edge containing only that intersection or an edge containing all vertices but that intersection, yielding a total of n edges.

Alternatively, one could find using a map to a finite projective plane to also obtain an $m = k^2 + k + 1.$

Erdös-deBruijn: $m \leq n$.

Generalized Fisher inequality: Fix $\lambda \geq 1$. $|A_i \cap A_j| = \lambda$. Then, $m \leq n$. (Fisher ~ 1930 in the Journal of Eugenics [for plants]. This inequality for uniform hypergraphs, which is more general than this result, was found by R.C. Bose in 1949 and Majumdar in 1955.)

Proof: Incidence matrix: $M=(m_{ij})=\begin{pmatrix} 0 & 1 & 1 & 0 \\ & 1 & & \\ \end{pmatrix}, m_{ij}=\begin{cases} 1 \text{ if } j\in A_i \\ 0 \text{ if } j\notin A_i \end{cases}$. $A_i\mapsto$ v_i : incidence vector of $A_i, v_i \in \mathbb{R}^n$.

Claim: Under the conditions of the theorem, v_1, \ldots, v_m are linearly independent. $\therefore m \leq n$ $A, B \subseteq V$, define dot product: $x, y \in \mathbb{R}^n, \underline{x} \cdot y = \sum x_i y_i$

$$v_A \cdot v_B = |A \cap B|$$

$$v_A \cdot v_A = |A \cap A| = |A|$$

Thm*: $v_1, \ldots, v_m \in \mathbb{R}^n, v_i \cdot v_i > \lambda, v_i \cdot v_j = \lambda, (i \neq j)$. Then, the v_i are linearly independent.

Case 2: $\forall i, |A_i| > \lambda$

Case 1:
$$\exists A_i, |A_i| = \lambda$$

Sunflower: A_1, \ldots, A_m such that $\exists k$ "kernel": $\forall i, K \subseteq A_i$ and $\forall i \neq j, A_i \cap A_j = K$

Need to show: $\forall \alpha_1, \dots, \alpha_m \in \mathbb{R}$, if $\sum \alpha_i v_i = 0$, then $\alpha_1 = \dots = \alpha_m = 0$

Recall to show:
$$\forall \alpha_1, \dots, \alpha_m \in \mathbb{R}$$
, if $\sum \alpha_i v_i = 0$, then $\alpha_1 = \dots = \alpha_m = 0$

$$0 = (\sum_{i=1}^m \alpha_i v_i) \cdot v_j = \sum_{i=1}^m \alpha_i (v_i \cdot v_j) = \lambda \sum_{i=1}^m \alpha_i + \alpha_j (v_j \cdot v_j - \lambda) = \lambda T + \alpha_j (k_j - \lambda),$$
where $T = \sum_{i=1}^m \alpha_i, |A_j| = k_j$
So, $\alpha_j = \frac{-\lambda T}{k_j - \lambda}$

$$T = \sum \alpha_j = -\lambda T \sum \frac{1}{k_j - \lambda}$$

$$\Rightarrow 0 = T(1 + \lambda \sum \frac{1}{k_j - \lambda})$$

$$\Rightarrow T = 0 \text{ b } / \alpha \text{ other term is positive} \Rightarrow \alpha_i = 0 \text{ b } / \alpha \text{ or } = -\frac{\lambda}{\alpha_j} T$$

So,
$$\alpha_j = \frac{-\lambda T}{k_i - \lambda}$$

$$T = \sum_{i} \alpha_{j} = -\lambda T \sum_{k_{j} - \lambda} \frac{1}{k_{j} - \lambda}$$

$$\implies 0 = T(1 + \lambda \sum \frac{1}{k_j - \lambda})$$

$$\implies T = 0 \text{ b/c other term is positive } \implies \alpha_j = 0 \text{ b/c } \alpha_j = \frac{-\lambda}{k_j - \lambda} T$$

Now, consider Clubtown, where there are $V = \{\text{citizens}\}\$, clubs $A_1, \ldots, A_m, A_i \neq A_j, |A_i|$ even. In Eventown, $|A_i \cap A_j|$ even

DO: Find $2^{\lfloor \frac{n}{2} \rfloor}$ clubs

REWARD: $2^{\lfloor \frac{n}{2} \rfloor}$ is maximum

 $m < 2^n$

DO: $m \le 2^{n-1}$ (max #even subsets = 2^{n-1})

CH: Every maximal Eventown system is maximal.

9 Tuesday, April 26, 2016

Consider the problem: Given $\alpha, \beta \geq 0$; $\forall i \neq j, |A_i \cap A_j| \in \{\alpha, \beta\}$ find an example of \mathcal{H} such that m = n

All 2-element sets $\binom{n}{2}$ sets with intersection sizes $L = \{0, 1\}$ All sets of size ≤ 2 : $\binom{n}{2} + n + 1 = \binom{n}{2} + \binom{n}{1} + \binom{n}{0}$. s intersections: $L = \{l_1, \ldots, l_s\}$ All s-subsets: $\binom{n}{s}$ uniform All sets of size $\leq s$: $\binom{n}{s} + \binom{n}{s-1} + \ldots + \binom{n}{1} + \binom{n}{0}$ non-uniform.

Ray-Chaudhuri-Wilson Theorem (1964): If \mathcal{H} is uniform and $s \leq n/$ and L-intersecting then $m \leq \binom{n}{s}$, where s = |L|. (\mathcal{H} is L-intersecting if $\forall i \neq j, |A_i \cap A_j| \in L$.)

Non-uniform RW Theorem (Frankl-Wilson (1980)): If \mathcal{H} is L-intersecting, then $m \leq \binom{n}{s} + \binom{n}{s-1} + \ldots + \binom{n}{1} + \binom{n}{0}$

Proof [of "non-uniform"] (Babai 1988): $\underline{x}, y \in \mathbb{R}^n$ $f(\underline{x}, y) = \prod_{i=1}^s (\underline{x} \cdot y - l_i)$.

 v_i is an incidence vector of A_i

for
$$j \neq k$$
, $f(v_j, v_k) = \prod_{i=1}^s (v_j \cdot v_i - l_i) = 0$, where $\underline{v}_j \cdot \underline{v}_k = |A_j \cap A_k|$ for $j = k$, $f(v_j, v_j) \neq 0$?

No: if $|A_i| \in L$, then we get 0.

Suppose $f(v_i, v_k) = 0 \iff j \neq k$.

 $f_i(x) = f(\underline{x}, \underline{v}_i), m$ polynomials in n variables each

Claim: then f_1, \ldots, f_m are linearly independent.

 $\mathcal{P}(n,s) = \text{space of polynomials of degree} \leq s \text{ in variables } x_1,\ldots,x_n$ $\alpha_0 + \alpha_1 x_1 + \ldots + \alpha_n x_n + \sum_{i < j} \alpha_{ij} x_i x_j + \sum_j \beta_j x_j^2$, a polynomial with $n+1+\binom{n}{2}+n$ terms.

DO: general case: $\binom{n}{s}(1+o(1))$ (i.e. $\binom{n}{s}(1+a_n)$ where $a_n \to 0$ as $n \to \infty$)

HW: Find exact dim, a closed-form expression—very simple. Need to count: monomials of $\deg \leq s$, $\deg(x_1^3x_2x_5x_7^2) = 1$.

Proof of Claim: Suppose $\gamma_1 f_1 + \ldots + \gamma_m f_m = 0$ Need to show: $\gamma_1 = \ldots = \gamma_m = 0$ $0 = \sum_j \gamma_j f_j(v_k) = \gamma_k f_k(v_k), \therefore \gamma_k = 0$ $(f_j(v_k) = 0 \text{ if and only if } k = j)$ HW: Suppose $f(v_j, v_k) = \begin{cases} \neq 0 \text{ if } j = k \\ 0 \text{ if } j < k \end{cases}$ (i.e., triangular condition). (a) Prove the f_j are

linearly independent. (b) The multilinearization of polynomials: $x_1^3x_2x_5x_7^2 \mapsto x_1x_2x_5x_7$; $f \mapsto \tilde{f}$. Show the \tilde{f} are linearly independent. (Remember: the v_i are (0,1)-vectors)

THINK: Find an ordering of the A_i and fix the definition of f_j such that the triangular condition is true.

#multilinear polynomials of degree $s:\binom{n}{s}$ count multilinear monomials of degree $\binom{n}{s}$

Tuesday, May 3, 2016

Reviewing Quiz 2, Problem 1:

(a) find max r such that $\forall x, 0 < x < r, a_n x^n \to 0$ $a_n \approx 4^n$, intuitively, but more precisely: $a_n \sim 4^n/\sqrt{\pi n}$ by Stirling's

DO: $\lim_{n\to\infty} a_{n+1}/a_n = 4$ – verify directly (no Stirling's)

Note
$$\sum_{i=0}^{2n} {2n \choose i} = 2^{2n} = 4^n$$
, while ${2n \choose n} > 4^n/(2n+1)$ obviously $> 3.9^n$

b) Convergence radius
$$r = 1/4$$
: $f(x) = \sum_{n=0}^{\infty} a_n x^n = 1/\sqrt{1 - 1/(1 - 4x)^{\alpha}} = \sum_{n=0}^{\infty} (-1/2) 4^n x^n$

Note $\sum_{i=0}^{2n} {2n \choose i} = 2^{2n} = 4^n$, while ${2n \choose n} > 4^n/(2n+1)$ obviously $> 3.9^n$ (b) Convergence radius r = 1/4: $f(x) = \sum_{n=0}^{\infty} a_n x^n = 1/\sqrt{1-4x}$ $1/(1-4x)^{\alpha} = \sum_{n=0}^{\infty} {n \choose n} 4^n x^n$ Computing ${-1/2 \choose n}$ from a DO problem into ordinary binomial coefficients Then, we'd find we need to require $\alpha = -1/2$.

Problem 2:

Taking
$$2n$$
 steps, total # walks that start at 0 and end at 0 in $2n$ steps: $\binom{2n}{n}$ # = $\binom{2n}{n-k}$ = $\binom{2n}{n+k}$

Problem 4:

$$(X_1, \ldots, X_n)$$
: n integers $1 \le X_i \le 6$
Sample space: $|\Omega| = 6^n$
 $E(\sum X_i) = \sum E(X_i) = 7n/2$
 $Var(\sum X_i) = \sum Var(X_i) = nVar(X_i)$ b/c X_i pairwise independent
 $E(\prod X_i) = \prod E(X_i) = (7/2)^n$ b/c X_i fully/mutually independent

Bonus:

$$b_n=n^2, b_n=\alpha b_{n-1}+\beta b_{n-2}+\gamma b_{n-3}$$
 (homogeneous 3rd order recurrence) $c_n=\Delta b_n=b_n-b_{n-1}=\text{linear}=2n-1$ $d_n=\Delta c_n=c_n-c_{n-1}=\text{constant}=2$ $\Delta d_n=0$

$$n^2 - 3(n-1)^2 + 3(n-2)^2 - (n-3)^2 = 0$$
: $1 - 3 + 3 - 1$

HW problems discussed:

 $\mathcal{Q}(n,5)$: space of homogeneous polynomials of degree s in n variables

 $\mathcal{P}(n,5)$: space of homogeneous polynomials of degree s in $\leq n$ variables

Here, we have the equation $k_1 + \ldots + k_n = 5, k_i \geq 0$

from which we have to count #solutions in unknowns k_1, \ldots, k_n

Using a stars and bars approach of counting:

we would have s stars and n-1 bars, to obtain s+n-1 binary symbols

result: $\binom{n+s-1}{s}$ Then, $\dim \mathcal{Q}(n,s) = \binom{n+s-1}{s}$ and $\dim \mathcal{P}(n,s) = \sum_{j \leq s} \dim \mathcal{Q}(n,j) = \binom{n+s}{s} = \dim \mathcal{Q}(n+1,s)$ Claim: $\dim P(n,s) = \dim Q(n+1,s)$

DO:
$$\sum_{j=0}^{s} {n+j-1 \choose j} = {n+s \choose s}$$

Recall the definition/notation for $f \mapsto \tilde{f}$ multilinearization (e.g., $x_1^3 x_4 x_5^2 \mapsto x_1 x_4 x_5$)

Suppose $\Omega = \mathbb{R}^n$, f_i polynomials, $v_i = (0,1)$ -vectors $\in \{0,1\}^n : f_i(v_i) = \tilde{f}_i(v_i)$.

Setup: f_1, \ldots, f_m functions over domain $\Omega, v_1, \ldots, v_m \in \Omega, f_i(v_j) = \begin{cases} \neq 0 & i = j \\ 0 & i < j \end{cases} \implies$

 f_1, \ldots, f_m are linearly independent. (Proof uses induction on $m; m = 1: \checkmark, m \geq 2:$ Suppose $\sum \alpha_i f_i = 0$. Claim $\alpha_m = 0$. Plug in $v_m : \sum \alpha_i f_i(v_m) = \alpha_m f_m(v_m) = 0 \implies$ $\alpha_m = 0$ since $f_i(v_m) = 0$ unless i = m and $f_m(v_m) \neq 0$.)

Frankl-Wilson Theorem (Non-uniform version: Ray-Chandhuri-Wilson Theorem): If $A_1, \ldots, A_m \subseteq [n], L = \{l_1, \ldots, l_s\}, \forall i \neq j | A_i \cap A_j| \in L$, then $m \leq \binom{n}{s} + \binom{n}{s-1} + \ldots + \binom{n}{0}$, by considering all subsets of size $|A_i| \leq s$, tight for all n and all $s \leq n, L = \{0, \ldots, s-1\}$

 $|A_1| \geq \ldots \geq |A_m|$ and take v_i as incidence vectors of A_i

 $f_i(\underline{x}) = \prod_{j:l_i < |A_i|} (\underline{v}_i \cdot \underline{x} - l_j)$, where $f_i : \mathbb{R}^n \to \mathbb{R}$ polynomials in n variables.

 $f_i(v_i) = \prod_{l_i < |A_i|} (|A_i| - l_j) \neq 0, \ f_i(v_j) = \prod_{k, l_i < |A_i|} (|A_i \cap A_j| - l_k)$

Claim: $|A_i \cap A_j| < |A_i|$ (Proof: o/w, if $A_i \subset A_j \implies |A_i| < |A_j| \implies \iff$)

Ray-Chandhuri-Wilson Theorem: If additionally uniform $|A_1| = \ldots = |A_m| = k$, then $m \leq \binom{n}{s}$ assuming s < n/2, tight $\forall n, \forall s < n/2$, (all subsets of size s)

Proof: We know that $\tilde{f}_1, \ldots, \tilde{f}_m$ linear independence. Q is the space of multilinear polynomials of $\deg \leq s-1$, $\dim Q = \binom{n}{s-1} + \binom{n}{s-2} + \ldots + \binom{n}{0} = \#g_I$; for $I \subseteq [n], |I| \leq s-1, g_I = \prod_{i=1}^n (1-i)^{n-i}$ $\prod_{i\in I}(x_i-1).$

HW [for next Tues]: Claim: All the g_I and \tilde{f}_i are linearly independent. $\therefore \dim Q + m \le 1$ $\binom{n}{s} + \binom{n}{s-1} + \dots \binom{n}{0}$, i.e. $m \leq \binom{n}{s}$

 $k \times n$ Latin rectangle: $k \le n$, $k \times n$ matrix $a_{ij} \in \{1, \ldots, n\}$, every row and column has at most 1 occurrence of each value

Graph: matching is a set of disjoint edges; perfect matching has n/2 edges too

Theorem: Non-empty regular bipartite graph always has a perfect matching.

HW: Use this to prove: any Latin rectangle can be completed to a Latin square

Determinant: $M_n(\mathbb{R}) \to \mathbb{R}$, $M_n(\mathbb{R}) = \{n \times n \text{ matrices}\}$, $A \in M_n(\mathbb{R})$, $A = (a_{ij})$, $\det(A) = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \prod_{i=1}^n a_{i,\sigma(i)}$

Permanent: $\operatorname{per}(A) = \sum_{\sigma} \prod_{i=1}^{n} a_{i\sigma(i)}$ (e.g., $\operatorname{per}(\mathbb{I}) = 1$, $\operatorname{per}(J) = n!$ [J is the all-ones matrix], $\operatorname{per}(\frac{1}{n}J) = n!/n^n > e^{-n}$

Note $A \to A'$ times λ , then $per(A') = \lambda per(A)$ and $per(\lambda A) = \lambda^n per(A)$

A is **stochastic** if every row is a probability distribution, i.e. $\forall a_{ij} \geq 0, \forall i, \sum_i a_{ij} = 1$

A is **doubly stochastic** if both A and A^T are stochastic, i.e. $\forall j, \sum_i a_{ij} = 1$.

DO: If A is stochastic, then $per(A) \leq 1$

DO: prove $n!/n^n > e^{-n}, \forall n$ [1-line proof, no Stirling's]

The Permanent Inequality, (Egorychev & Falikman): If A doubly stochastic, then $per(A) \ge n!/n^n$ (used to be called van der Waerchen's conjecture) [Proof in van Lint-Wilson]

10 Thursday, May 5, 2016

HW problem discussed:

$$\begin{split} S(n,k) &= \sum_{t=0}^{\infty} \binom{n}{kt} \stackrel{?}{=} \frac{1}{k} \sum_{j=0}^{k-1} (1+\zeta^j)^n \\ \text{where } \zeta &= e^{2\pi i/k} \text{ is (the first) } k^{\text{th}} \text{ root of unity (along the unit circle)} \\ &= \frac{1}{k} \sum_{j=0}^{k-1} \sum_{l=0}^{n} \binom{n}{l} \zeta^{jl} = \frac{1}{k} \sum_{l=0}^{n} \binom{n}{l} \sum_{j=0}^{k-1} \zeta^{jl} \end{split}$$

DO: Powers of ζ^l are all k^{th} roots of unity $(x^k = 1, x \in \mathbb{C}) \iff \gcd(k, l) = 1$ (relatively prime)

DO: ζ^l is an m^{th} root of unity where $m = k/\gcd(k, l)$.

Note if k|l, then $\zeta^l=1$ The **order** of $z\in\mathbb{C}$ is the smallest $m\geq 1$ such that $z^m=1$ $\exists \mathrm{order} \iff z \text{ is a root of unity}$ If $\mathrm{ord}(z)=m$, then we say that z is a **primitive** m^{th} **root of unity** DO: Suppose z is a root of unity. $z^s = 1 \iff \operatorname{ord}(z)|s$

a|b (i.e., a divides b) if $\exists x$ such that ax = b. Note 0|0.

d is a **greatest common divisor (gcd)** if \underline{a} and \underline{b} if (a) \underline{d} is a common divisor (i.e., d|a and d|b) and (b) $\forall e$, if e|a and e|b (i.e., \underline{e} is a common divisor), then e|d

DO: $\forall x, a | x \iff a = \pm 1$

DO: Understand gcd(0,0) = 0

DO: $\forall a, b$, if d is a gcd, then d, -d are the only gcds

Note if d is a gcd(a, b) then -d is also a gcd(a, b). Convention: gcd(a, b) denotes the non-negative gcd

DO: $\operatorname{ord}(z^l) = \operatorname{ord}(z) \iff \gcd(\operatorname{ord}(z), l)$

DO: $\operatorname{ord}(z^l) = \operatorname{ord}(z)/\gcd(l,\operatorname{ord}(z))$

Suppose $\operatorname{ord}(z) = k$. Then powers of z^l are exactly the m^{th} roots of unity, $m = k/\gcd(k, l)$ $z^{lj}, j = 0, \ldots, k-1 \implies \operatorname{each} m^{\text{th}}$ root of unity occurs k/m times.

DO: If z is a k^{th} root of unity $z \neq 1$, then $\sum_{j=0}^{k-1} z^j = 0$

Thus,
$$S(n,k) = \frac{1}{k} \sum_{l=0,k|l} \binom{n}{l} k$$
,
since $\sum_{j=0}^{k-1} \zeta^{jl} = 0$ unless $\zeta^l = 1 \iff k|l$.

Then, $S(n,2) = \binom{n}{0} + \binom{n}{2} + \ldots = 2^{n-1} = 2^n/2$, if $n \ge 1$, while $S(0,2) = 1 = 2^0 \ne 2^0/2$.

If
$$0^n = \begin{cases} \text{if } n = 0, & 1 \\ \text{if } n \ge 1, & 0 \end{cases} = (1 - 1)^n = \binom{n}{0} - \binom{n}{1} + \binom{n}{2} - \dots$$

HW: $|S(n,3) - 2^n/3| < 1$. Use formula for S(n,3).

Sunflower: set system A_1, \ldots, A_m such that $K := \bigcap_{i=1}^m A_i$. Then the set $A_i - K$ are disjoint **petals**, i.e., $\forall i \neq j, A_i \cap A_j = K$.

HW: Suppose $\forall i, |A_i| \leq r$, the A_i are distinct. Suppose $m > (s-1)^r r!$. Then, \exists sunflower with s petals.

Matching in a hypergraph \mathcal{H} : a set of disjoint edges, $\nu(\mathcal{H}) = \max \# \text{disjoint edges matching number}$

If $\mathcal{H} = (V, \mathcal{E})$, a **cover** or "**hitting set**" of \mathcal{H} is a subset $W \subseteq V$ such that $\forall E \in \mathcal{E}, W \cap E \neq \emptyset$. $\tau(\mathcal{H}) = \min$ size of a hitting set "**covering number**"

HW: (a) $\nu(\mathcal{H}) \leq \tau(\mathcal{H})$ [direct proof, w/o anything fractional], (b) If \mathcal{H} is r-uniform, then $\tau(\mathcal{H}) \leq r\nu(\mathcal{H})$, (c) $\forall r \geq 2, \forall \nu \geq 1$, show: both (a) and (b) are tight.

Fractional cover: $f: V \to \mathbb{R}, \forall v \in V, f(v) \ge 0; \forall E \in \mathcal{E}, \sum_{v \in E} f(v) \ge 1.$

Integer solutions to this system of n+m inequalities gives a cover of size $\sum_{v \in V} f(v)$ (value of fractional cover)

$$\tau^*(\mathcal{H}) = \text{fractional cover number} = \min_{f: \text{fractional cover}} \text{value}(f)$$

DO: $\tau^* \leq \tau$

Fractional matching: $g: \mathcal{E} \to \mathbb{R}$ such that $\forall E \in \mathcal{E}g(E) \geq 0$ and $\forall v \in V \sum_{E,v \in E} g(E) \geq 1$. value $(g) = \sum_{E \in \mathcal{E}} g(E), \nu^*(\mathcal{H}) = \max_{g: \text{fractional matching}} (g)$

HW: $\nu^* \leq \tau^*$

Corollary: $\nu \le \nu^* \le \tau^* \le \tau$

HW: Find ν, τ, ν^*, τ^* for all finite project planes (in terms of the order). [Do not use the result below.]

Theorem: $\nu^* = \tau^*$ by the Linear Programming Duality Theorem

DO: C_n , n-cycles: $\tau(C_n) = \lceil n/2 \rceil$. $\nu(C_n) = \lfloor n/2 \rfloor$. $\tau^* \le n/2$, $\nu^* \ge n/2$ (assign 1/2 as weight for each of the n points). So, $n/2 \le \nu^* \le \tau^* \le n/2$.

11 Tuesday, May 10, 2016

 $\forall \text{hypergraph } \mathcal{H} = (V, \mathcal{E}), \ \alpha \chi \geq n.$

Pf: every color class is independent

If \mathcal{H} is a vertex-transitive hypergraph $(\forall v_1, v_2 \in V, \exists \pi \in Aut(\mathcal{H}) \text{ such that } \pi(v_1) = v_2,$ then $\alpha \chi \leq n(1 + \ln n)$.

DO: χ is the min #independent sets of which the union is V

Pf: Let A be an independent set of size α , $C(v) := \min\{i \mid v \in C_i\}$ $G = \operatorname{Aut}(\mathcal{H})$. Pick $\pi_1, \ldots, \pi_s \in G$ uniformly, independently at random

DO: If $\mathbb{P}(\bigcup_{i=1}^s \pi_i(A) \neq V) < 1$, then $\chi \leq s$. [Need to show the inequality for as small an n as we can do.]

DO: Fix a vertex v. $\mathbb{P}(v \notin \pi_1(A)) = 1 - \alpha/n$. This is where we use vertex-transitivity. also, this proof does not depend on the vertex.

$$\mathbb{P}(v \notin \pi_2(A)) = \text{same}$$

$$\mathbb{P}(v \notin \pi_1(A) \cup \ldots \cup \pi_s(A)) = (1 - \alpha/n)^s$$

$$\mathbb{P}((v \notin \pi_1(A)) \cap \ldots \cap (v \notin \pi_s(A))) = \prod \mathbb{P}(v\pi_i(A))$$

b/c the indicator variables of the events are functions of the independent random variables π_i .

Cor (so far): if $n(1 - \alpha/n) < 1$, then $chi \le s$.

$$\mathbb{P}(\exists v \notin \bigcup_{i=1}^{s} \pi_i(A)) = \mathbb{P}(\bigcup_{v \in V} (v \notin \bigcup_{i=1}^{s} \pi_i(A))) \leq \sum_{v \in V} \mathbb{P}(v \in \bigcup \dots) = n(1 - \alpha/n)^s$$

DO: $\forall x \neq 0, 1 + x < e^x$, it suffices $ne^{-\alpha s/n} \leq 1, n \leq e^{\alpha s/n}$.

Then,
$$1 - \alpha/n < e^{-\alpha/n}$$
, so $(1 - \alpha/n)^s < e^{-\alpha s/n} \implies \ln n \le \alpha s/n \implies s \ge n \ln n/\alpha$. So, $s := \lceil n \ln n/\alpha \rceil$.

Old HW:

 $\nu(\mathcal{H})$ matching #: max size of matching = max#disjoint edges

 $\tau(\mathcal{H})$ covering/hitting/transversal #: min size of cover [cover/hitting/transversal subset $S \subset V$ such that $\forall E \in \mathcal{E}, E \cap S \neq \emptyset$

If \mathcal{H} is k-uniform, then $\tau \leq k\nu$. $T = \bigcup_{i=1}^{s} E_i$, T is a cover.

Maximal matching $s \leq \nu$.

 $\nu \le \tau \le k\nu, \forall k \ge 2, \nu \ge 1 \ (\mathcal{H}: \nu \text{ disjoint edges})$

Case $\nu = 1$: find intersecting k-uniform hypergraph with $\tau = k$.

 $n=2k-1, \ \mathcal{E}=\binom{[n]}{k}$ set of k-tuples, complete k-uniform hypergraph on 2k-1 vertices So far, we have $\nu \leq \nu^*, \tau^* \leq \tau$. Claim: $\nu^* \leq \tau^*$

Need to show \forall fractional matching g and \forall fractional covering f, $val(g) \leq val(g)$.

We have $S := \sum_{(v,E),v \in E} f(v)g(E)$

while
$$S = \sum_{v \in V} \sum_{E,v \in E} f(v)g(E) = \sum_{v \in V} f(v) \sum_{E,v \in E} g(E) \le \sum_{v \in V} f(v) = \operatorname{val}(f)$$

while $S = \sum_{E \in \mathcal{E}} \sum_{v \in E} f(v)g(E) = \sum_{E \in \mathcal{E}} g(E) \sum_{v \in E} f(v) \ge \sum_{E \in \mathcal{E}} g(E) = \operatorname{val}(g)$
Thus, $\operatorname{val}(g) \le S \le \operatorname{val}(f)$. (QED)

DO: If \mathcal{H} is k-uniform, then $\nu \leq n/k$.

DO: T/F? If \mathcal{H} is k-uniform, then $\nu^* \leq n/k$.

DO: If \mathcal{H} is k-uniform and regular, then $\nu^* = \tau^* = n/k$. [Do not use the Duality Theorem.]

DO: If \mathcal{H} is k-uniform, then $\tau \leq \lceil n \ln m/k \rceil$

DO: Use this to prove $\alpha \chi \leq \cdots$ for vertex-transitive hypergraphs.

A Sperner family is a set system A_1, \ldots, A_m such that no two are comparable $(\forall i \neq j, A_i \not\subseteq A_j)$.

Sperner's Theorem: $m \leq \binom{n}{\lfloor n/2 \rfloor}$. (All k-subsets: $m = \binom{n}{k}$, $k = \lfloor n/2 \rfloor$ or $\lceil n/2 \rceil$.)

Lemma: If $A_1, \ldots, A_m \subseteq [n]$, Sperner family then $\sum_{i=1}^m 1/\binom{n}{|A_i|} \leq 1$

DO: (a) Use this to prove theorem. (b) Find Sperner families for which equality holds in the Lemma.

CH: Find all such families.

12 Thursday, May 12, 2016

BLYM Inequality: $A_1, \ldots, A_m \subseteq [n]$, Sperner $\implies \sum_{i=1}^m 1/\binom{1}{|\Delta_i|} \le 1$. Equality occurs when complete k-uniform, $\forall k$.

Q: Are there any other cases?

Note, if A_1, \ldots, A_m are all the subsets and $\forall i \neq j, A_i \not\subseteq A_j$, then $\sum_{A \subseteq [n]} 1/\binom{n}{|A|} = n + 1$

Then, Sperner's Thoerem (if Sperner family, then $m \leq \binom{n}{\lfloor n/2 \rfloor}$, equality if complete k-uniform with $k = \lfloor n/2 \rfloor$ or $\lceil n/2 \rceil$. [Pf from BYLM: $m \leq \sum_{i=1}^m \binom{n}{\lfloor n/2 \rfloor} / \binom{n}{|A_i|} \leq \binom{n}{\lfloor n/2 \rfloor}$, noting $\binom{n}{\lfloor n/2 \rfloor} / \binom{n}{|A_i|} \geq 1$.]

DO⁺: These are the only cases of equality.

Recall Lubell's Permutation Method. σ ordering of [n], $A \subseteq [n]$ [EKR was proved with cyclic permutation method by Katona.] (A, σ) are compatible if A is a **prefix** under σ (i.e., sequence of adjacent elements in the given ordering)

 σ : random linear ordering, $|\Omega| = n!$, A_1, \ldots, A_m Sperner family, $N(\sigma) = \#i$ such that A_i is compatible with σ .

- (1) $\forall \sigma, N(\sigma) \leq 1 \iff$ Any two prefixes of a linear order are compatible.
- (2) $1 \ge E(N(\sigma)) = \sum E(X_i) = \sum \mathbb{P}(A \text{ is compatible with } \sigma) = \sum 1/\binom{n}{|A_i|}$ $N(\sigma) = \sum_{i=1}^m X_i, X_i \text{ indicator of "}A_i \text{ is compatible with } \sigma$ " $\mathbb{P}(A_i \text{ compatible with } \sigma) = |A_i|!(n-|A_i|)!/n! = 1/\binom{n}{|A_i|}$ [over choice of σ]

HW [next Thurs]: (baby Littlewood-Offord) Given $a_1, \ldots, a_n, b \in \mathbb{R}$, $a_i \neq 0$, take $I \subseteq [n]$ at random, and note we have $|\Omega| = 2^n$. Prove $\exists c$ such that $\mathbb{P}(\sum_{i \in I} a_i = b) \leq c/\sqrt{n}$, and estimate c.

13 Tuesday, May 17, 2016

Midterm problem 1:

```
k-uniform hypergraph \mathcal{H}=(V,\mathcal{E}), n=|V|, m=|\mathcal{E}|.

Prove: \tau(\mathcal{H}) \leq \lceil \frac{n}{k} \ln m \rceil min cover (hitting set).

Pick sequence x_1, \ldots, x_s \in V at random independently (with replacement).

\mathbb{P}(x_i \in E) = k/n,

\mathbb{P}(x_i \notin E) = 1 - k/n,

\mathbb{P}(\forall i, x_i \notin E) = \mathbb{P}(\cap_{i=1}^s \text{"} x_i \notin E'') = (1 - k/n)^s

\mathbb{P}(\exists E : E \text{ is bad}) = \mathbb{P}(\cup_{E \in \mathcal{E}} E \text{ is bad}) \leq m(1 - k/n)^2

1 - k/n < e^{-k/n}.

\therefore If me^{-ks/n} \leq 1 then \tau(\mathcal{H}) \leq s,

while me^{-ks/n} \leq 1 \iff \ln m - ks/n \leq 0 \iff \ln m \leq ks/n \iff s \geq \frac{n}{k} \ln m

\therefore If s \geq \frac{n}{k} \ln m, then \tau \leq s.

With s := \lceil \frac{n}{k} \ln m \rceil we have \tau \leq s.
```

Midterm problem 2:

```
Def \nu^*(\mathcal{H}): g: \mathcal{E} \to \mathbb{R} is a fractional matching if \forall E \in \mathcal{E}, g(E) \geq 0 and \forall v \in V, \sum_{E,v \in E} g(E) \leq 1. value(g) = \sum_{E \in \mathcal{E}} g(E) \nu^*(\mathcal{H}) = \min_g \text{value}(g) If \mathcal{H} is k-uniform then \nu^* \leq k\nu. \mathcal{K}_n^{(k)}: complete k-uniform hypergraph \nu = \lfloor n/k \rfloor, \nu^* = n/k n/k = \binom{n}{k}/\binom{n-1}{k-1} \leq \nu^* \leq \tau^* \leq n/k by uniform weight. \tau \leq k\nu \nu^* \leq \tau^* \leq \tau \leq k\nu (first two parts trivial) For infinitely many values of k, find \mathcal{H} such that \nu^*(k-1)\nu projective plane of order k-1: n=(k-1)^2+(k-1)+1=k^2-k+1 \nu=1. Need \nu^*>k-1. \nu^*=\tau^*=n/k=(k^2-k+1)k=k-1+1/k (uniform weight= 1/k)
```

"There is a difference between easy and trivial; trivial is straightforward."

Midterm problem 3:

$$s \ge 2t + 1$$
 Kneser's graph $K(s,t)$: $\binom{s}{t}$ vertices $\{v_T \mid T \subseteq [s], |T| = t\}$. $v_T \sim v_S$ if $T \cap S = \emptyset$ DO: $K(5,2) = \text{Petersen's}, n = \binom{5}{2} = 10, \text{ deg} = \binom{3}{2} = 3.$

Claim: $\alpha(K(s,t)) = \binom{s-1}{t-1}$

Lemma: A set, $A \subseteq V(K(s,t))$ is independent \iff the corresponding labels are an intersecting hypergraph

the label of a set of vertices form a t-uniform hypergraph

max independence
$$\iff$$
 max intersecting form, $\alpha = \binom{s-1}{t-1}$ EKR

Midterm problem 4:

$$x_1 + \ldots + x_k = n, x_i \ge 2$$
, #solutions = $N(n, k)$
 $y_1 + \ldots + y_k = n, y_i \ge 0$
 $L(n, k) = \binom{n+k-1}{n} = \binom{n+k-1}{k-1} (n \text{ stars})$
Claim: $N(n, k) = L(n-2k, k)$
using $y_i := x_i - 2$

Midterm problem 5:

Flip n coins, X = #pairs of consecutive heads E(X), Var(X)

$$X = \sum_{i=1}^{n-1} Y_i, \text{ where } Y_i = \begin{cases} 1 & \text{if } z_i = z_{i+1} = H \\ 0 & \text{if otherwise} \end{cases}$$

$$E(Y_i) = \mathbb{P}(z_i = z_{i+1} = H) = 1/4$$

$$E(X) = (n-1)/4$$

$$Var(X) = \sum_i \sum_j \text{Cov}(Y_i, Y_j) = \sum_{i=1}^{n-1} \text{Var}(Y_i) + 2\sum_{i=1}^{n-2} \text{Cov}(Y_i, Y_{i+1})$$

$$= 3(n-1)/16 + 2(n-2)/16$$

Midterm problem 6:

$$\begin{split} S(n,5) &= \sum_{k=0}^k \binom{n}{5k} \\ \text{Claim: } \exists c > 0 \text{ such that } |S(n,5) - 2^n/5| < (2-c)^n \\ \text{Note: } (2-c)^n/2^n &= (1-c/2)^n \to 0 \text{ exponentially} \\ S(n,5) &= [(1+1)^n + (1+\omega)^n + (1+\omega^2)^n + (1+\omega^3)^n + (1+\omega^4)^n]/5, \, \omega = e^{2\pi i/5} \\ |S(n,5) - 2^n/5| &= |\sum_{j=1}^4 (1+\omega^j)^n|/5 \le \frac{1}{5} \sum_{j=1}^4 |(1+\omega^j)^n| \le \frac{4(2-c)^n}{5} < (2-c)^n \\ \text{since } |1+\omega^j| < 1 + |\omega^j| = 2, \, \exists i > 0, \forall j, |1+\omega^j| < 2-c \text{ (b/c } \omega^j \text{ not real for } j > 0) \end{split}$$

Ramsey's Theorem baby version: $n \to (k, l)$ if no matter how we color $E(K_n)$ red/blue, either $\exists \text{red } K_k$ or $\exists \text{blue } K_l$ (Erdös-Rado arrow notation)

Pf: of
$$6 \rightarrow (3,3)$$

DO: (Erdös-Szekeres)
$$\binom{k+l}{k} \to (k+1, l+1)$$
. $k=l=2 \implies \binom{4}{2}=6 \to (3,3)$

Proceed by induction on k+l

Base cases k = 1 or l = 1

Inductive step:

Assume $k, l \geq 2$

Use inductive hypothesis both for (k-1,l) and for (k,l-1)

HW: Prove $17 \rightarrow (3,3,3)$

Ramsey: $\forall k_1, \ldots, k_j, \exists n \text{ such that } n \to (k_1, \ldots, k_j)$

14 Thursday, May 19, 2016

Oddtown Theorem: $A_1, \ldots, A_m \subseteq [n]$, (i) $|A_i| = \text{odd}$ and (ii) $|A_i \cap A_j| = \text{even} \implies$ $m \leq n$.

Proof: incidence vectors v_1, \ldots, v_m claim linear independence

DO: (a) If $v_1, \ldots, v_m \in \{0, 1\}^n$ and v_1, \ldots, v_m are linearly independent over \mathbb{F}_p , then they are linearly independent over \mathbb{R} . (b) Converse false for all p.

incidence matrix
$$M = \begin{pmatrix} -v_1 - \\ \vdots \\ -v_m - \end{pmatrix}$$

 $MM^T = (|A_i \cap A_j|)_{m \times m}$ Claim MM^T has full rank (rk = m) over \mathbb{F}_2

DO: $\operatorname{rk}(AB) \leq \operatorname{rk}(A), \operatorname{rk}(B)$ over any field

Corollary: $m = \operatorname{rk}(MM^T) \le \operatorname{rk}(M) = n$.

Observation with Erdös-Szekeres: $4^k > {2k \choose k} \to (k+1,k+1) =: (k+1)_2$. Moreover, $n=4^k \to (k+1)_2$, and we can asymptotically estimate $n \to (1+\frac{1}{2}\log_2 n)_2$.

" $n \to (k+l)$ ": in any graph G with n vertices either clique number $\omega(G) \ge k$ or

Want to find $n \not\to \binom{?}{k}_2$. Can try $n \not\to \left(\frac{n}{2}\right)_2$ or $n \not\to (\sqrt{n}+1)_2$.

[Look up Turán's Theorem.]

Erdös: $n \nrightarrow (2\log_2 n)_2$

(We don't even know minimum number (Ramsey number) to arrow 5, i.e. $? \rightarrow (5)_2$.)

Proof from Erdös: $n \neq (k)_2$. Take a random graph p = 1/2 with space $|\Omega| = 2^{\binom{n}{2}}$ (uniform). $A \subset [n], |A| = k,$

 $\mathbb{P}(A \text{ is a clique}) = 1/2^{\binom{n}{2}}.$

 $\mathbb{P}(A \text{ is independent}) = 1/2^{\binom{n}{2}} \text{ likewise.}$

 $\mathbb{P}(A \text{ homogeneous}) = 2/2^{\binom{k}{2}} = 2^{1-\binom{k}{2}}.$

 $\mathbb{P}(\exists \text{homogenous subset of size } k) < \binom{n}{k} 2^{1-\binom{k}{2}} \text{ (inequality by union bound)}$

Corollary: If $\binom{n}{k} 2^{1-\binom{k}{2}} \le 1$, then $n \ne (k)_2$.

$$\begin{aligned} \text{(DO: } \binom{n}{k} &\leq \frac{n^k}{k!}.) \\ &\text{if } \frac{2}{k!} \frac{n^k}{2^{\binom{k}{2}}} \leq 1 \implies \\ &\frac{2}{k!} \left(\frac{n}{2^{(k-1)/2}}\right)^k \leq 1? \\ &\text{sufficient to get } \frac{n}{2^{(k-1)/2}} \leq 1 \\ &\text{for } n \not\rightarrow (k)_2, \text{ it suffices: } \frac{n}{2^{(k-1)/2}} \leq 1 \\ &n \leq 2^{(k-1)/2} \\ &\log_2 n \leq \frac{k-1}{2} \\ &k \geq 1 + 2\log_2 n. \end{aligned}$$

Zsigmond Nagy's construction: gives $n \not\to (c\sqrt[3]{n})_2$

$$n = \binom{s}{3}, V = \{v_T \mid T \subseteq [s], |T| = 3\}, T, S \subseteq [s], |T| = |S| = 3.$$
 $v_T \sim v_S$ adjacent if $|S \cap T| = 1$.

HW: Prove Nagy's graph, $\omega(G) \leq s$, $\alpha(G) \leq s$. [For each part, use a theorem provided in class.]

$$S \cap T \neq \emptyset$$
, so $\binom{s-1}{2} \sim s^2/2 \sim cn^{2/3}$

DO: Find $\Omega(s^2)$ triples in [s] such that every pair intersects in 0 or 1.

Ramsey's Theorem: $\forall t, s, k_1, \dots, k_s, \exists n \text{ such that } n \to (k_1, \dots, k_s)^{(t)}; n \to (k)_s^{(t)} \text{ where } t \text{ indicates coloring of } t\text{-tuples and } s = \#\text{colors}.$

Erdös-Rado: $n \to (c \log \log n)_2^{(3)}$

 $n \to (\approx \frac{1}{2} \log_2 n)_2^{(2)}$ (graph case). So we find $r \approx \log_2 n$ vertices such that \exists sequence c_1, \ldots, c_r of colors such that $\forall i < j, \operatorname{color}(w_i, w_j) = c_i$. So, majority of the c_i is the same, say "blue" $W = \{w_i \mid c_i \text{ blue}\}$ so $|W| \gtrsim \frac{1}{2} \log_2 n$. Thus, W is all blue.

 $2^{1+\dots+r}=w^{(r+1)r/2}\approx 2^{r^2/2}\approx n$, so $r^2/2\approx \log_2 n$, i.e., $r\approx \sqrt{2\log_2 n}$. $\operatorname{col}(w_i,w_j,w_l)$ only depends on (i,j). Pick $\frac{1}{2}\log_2 r$ out of these that are homogeneous $\sim \frac{1}{4}\log_2\log_2 n$.

$$t=3: m \not\to (c_1\sqrt{\log n})_2^{(3)}$$
, but $n\to (c_2\log\log n)$.

15 Tuesday, May 24, 2016

HW Problem reviewed:

Nagy's graph G_s : $n = \binom{s}{3} \# \text{vertices}$, $\{v_T \mid T \subseteq [s], |T| = 3\}$, $v_{T_1} \sim v_{T_2}$ if $|T_1 \cap T_2| = 1$ Claim: $\alpha(G_s) \leq s$ and $\omega(G_s) \leq s$ (clique number)

Clique corresponds to triples T_1, \ldots, T_m such that $\forall i \neq j, |T_i \cap T_j| = 1$

Need To Show: $m \leq s$, which we have by Fisher's Inequality

Independent set corresponds to T_1, \ldots, T_m such that $\forall i \neq j, |T_i \cap T_j| = \begin{cases} 0 \\ 2 \end{cases}$

Need To Show: $m \leq s$, which we have by Oddtown Theorem

Recall the Ray-Chaudhuri – Wilson Inequality: If A_1, \ldots, A_m uniform, $L = \{l_1, \ldots, l_s\}$, $A_i \subseteq [n], \forall i \neq j | A_i \cap A_j | \in L$, then $m \leq {n \choose s}$

Also, recall from Frankl-Wilson (1980): If p prime, $A_1, \ldots, A_m \subseteq [n], \forall i | A_i | = k, L =$ $\{l_1,\ldots,l_s\},\ k\notin L \mod p,\ \mathrm{and}\ \forall i\neq j, |A_i\cap A_j|\in L \mod p\ (:\forall ik\not\equiv l_i\mod p),\ \mathrm{then}$ $m \leq \binom{n}{s}$ ("modular R-W theorem")

Nagy: explicitly, $n \not\to (c\sqrt[3]{n})_2$

Explicit Ramsey numbers: $\forall \epsilon > 0, n \not\to (n^{\epsilon})$, i.e. $n \not\to (n^{o(1)})$ with little-o notation.

Consider a FW graph, p prime. Then $n = \binom{2p^2-1}{p^2-1}$ subsets of $[2p^2-1]$ of size p^2-1 : $\{v_T \mid T \subseteq [2p^2 - 1], |T| = p^2 - 1\}, v_{T_1} \sim v_{T_2} \text{ if } |T_1 \cap T_2| \equiv -1 \mod p$

Clique: T_1, \ldots, T_m such that $\forall i \leq j, |T_i \cap T_j| \equiv -1 \mod p$

Claim: $m \leq {2p^2-1 \choose p-1}$ (by R-W)

 $|T_i \cap T_j| \in \{p-1, 2p-1, \dots, p^2-p-1\} \ (p-1 \text{ elements, here})$

Independence Number: $|T_i \cap T_j| \not\equiv -1 \mod p$, $|T_i| \equiv p^2 - 1 \equiv -1 \mod p$,

$$L = \{0, 1, \dots, p-2\} \implies \alpha = m \le \binom{2p^2 - 1}{p-1}$$

 $L = \{0, 1, \dots, p-2\} \implies \alpha = m \le {2p^2 - 1 \choose p-1}$ $\text{Note } {2p^2 - 1 \choose p^2 - 1} \sim c \cdot 2^{2p^2 - 1} / \sqrt{2p^2 - 1} \sim c' \cdot 2^{2p^2} / p, \text{ while } {2p^2 - 1 \choose p} < (2p^2 - 1)^p = 2^{p \log_2(2p^2 - 1)}$ $p \log_2(2p^2 - 1) \sim p \log_2(p^2) = 2p \log_2 p, \text{ and } \log(2^{2p^2}) = 2p^2$

 $\implies \log(2^{2p^2})/\log[(2p^2-1)^p] \sim p/\log p$ $\implies {2p^2-1 \choose p} \lesssim {2p^2-1 \choose p^2-1}, \text{ i.e. } n^{\log p/p} \lesssim n \text{ (consider } \log p/p = \epsilon \text{ here)}$

Projective plane $\mathcal{P} = (P, L, I), I \subseteq P \times L$ (i.e. p - l). Polarity is a bijection $f: P \to L$ such that $p_1 - f(p_2)$ iff $p_2 - f(p_1)$

DO: each Galois plane has a polarity $(p : [\alpha_1, \alpha_2, \alpha_3], l : [\beta_1, \beta_2, \beta_3], p \longrightarrow l \text{ if } \sum \alpha_i \beta_i =$

"Fixed point" of a polarity f: p - f(p); $[\alpha_1, \alpha_2, \alpha_3]$ is a fixed point of "standard" polarity if $\sum \alpha_i^2 = 0$. So \mathbb{F}_q if q prime: $q|\alpha_1^2 + \alpha_2^2 + \alpha_3^2$.

Baer's Theorem: Every polarity has a fixed point, \forall finite projective plane

For a contradiction, suppose f has no fixed point.

Consider an incidence matrix $M = (m_{ij})$; we list the lines in a given order, and list the points in the corresponding order from $l_i := f(p_i)$

If f is a polarity, then $M = M^T$ (symmetric matrix)

If f is fixed-point-free, then $\forall i, m_{ii} = 0$ (diagonal is all zero) If M is an incidence matrix of a projective plane, then

$$M^{T}M = \begin{pmatrix} n+1 & 1 & \cdots & 1\\ 1 & n+1 & \cdots & 1\\ \vdots & \vdots & \ddots & \vdots\\ 1 & 1 & \cdots & n+1 \end{pmatrix} = J + nI$$

row sum = $(n+1) + N - 1 = n^2 + 2n + 1 = (n+1)^2$

all others: for $i \geq 2$, $Je_i = 0$ so $M^2e_i = \lambda_i^2e_i$, so $\lambda_2^2 = \ldots = \lambda_N^2 = n$ ($\lambda_i = \pm \sqrt{n}$), so now $M^2 = J + nI$

Spectral Theorem: M has an orthonormal eigenbasis e_1, \ldots, e_N :

$$Me_i = \lambda_i e_i, Me_1 = (n+1)e_1, e_i \perp e_j, \text{ and } e_1 = \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}$$

So, trace $(M) = \sum_{i} m_{ii} = 0 = \sum_{i} \lambda_{i} = (n+1)^{2} + \sqrt{n} \pm \dots \sqrt{n}$ $(n^{2} + n \text{ terms of form } \pm \sqrt{n})$ Thus, $0 = (n+1) + K\sqrt{n} \implies 0 \mod n \equiv -K\sqrt{n} = (n+1) \implies K^{2}n \equiv (n+1)^{2} = 1 \mod n$

16 Thursday, May 26, 2016

Quiz 3 Problem 1:

 $x_1 + \ldots + x_k = n$ count solutions in positive odd integers $y_i := (x_i - 1)/2$ integer ≥ 0 , so $\sum y_i = (n - k)/2, y_i \geq 0$ (bijection b/w sets of solutions) Case 1: n - k odd \Longrightarrow #solutions = 0 Case 2: n - k even \Longrightarrow $\binom{n-k}{2} + k - 1 = \binom{n+k-1}{k-1}$

Quiz 3 Problem 2:

 $\alpha(G) \leq 1 + 2\log_2 n$ for almost all grpahs G with n vertices $p_n = \mathbb{P}(\text{for random graph } G \text{ with } n \text{ vertices, this holds})$ $\lim_{n \to \infty} p_n = 1$

In class: $1 - p_n = \mathbb{P}(\exists \text{ independent set of size} > 1 + 2\log_2 n) \le 1/k!, k: 1 + 2\log_2 n$

Quiz 3 Bonus:

Prove: $\forall k \exists n$ from any n points in the plane, no 3 on a line, $\exists k$: convex k-gon

DO: k points span a convex k-gon \iff every 4 of them span a convex 4-gon (quadrilateral)

Color quadruples of points: red if convex, blue if concave. $n \to (k, 5)_2^{(4)}$; 5-points all-blue impossible; therefore k-point all-red set exists.

Comment: this gives astronomically large bound, $n = 2^{2^{2^k}}$

"Friendship graph:" every pair of points has exactly 1 common neighbor

Example: "bouquet of triangles:" a set of triangles that share one point and are disjoint otherwise.

Theorem (Erdős, Rényi, Vera Sós): Bouquets of triangles are the only Friendship graphs.

```
Pf: N(v): set of neighbors of v
\forall v, w, |N(v) \cap N(w)| = 1
\forall x, y \exists ! v \text{ such that } x, y \in N(v)
\therefore \{N(v) \mid v \in V\} \text{ is a possibly degenerate projective plane}
Case 1: degenerate. Then there is a vertex adjacent to all the others.

Exercise: this must be a bouquet of triangles
Case 2: Projective plane. Claim: cannot happen
v \leftrightarrow N(v); \text{ polarity: } x \in N(y) \iff y \in N(x) \text{ because}
in Friendship graph, x \in N(y) \iff x \sim y \text{ (adjacent)} \iff y \in N(v)
```

Baer's Theorem: Every polarity of a finite projective plane has a fixed point: $v \in N(v)$.

But this is impossible in our case because it would mean $v \sim v$. So this case cannot arise from a Friendship graph.

Linear Programming Problem:

$$x = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}, y = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}$$
, (Notation: $\underline{x} \leq \underline{y}$ if $\forall i, x_i \leq y_i$)). Concise notation for a system of k

linear equations in n unknowns: $A\underline{x}=\underline{b}, A=(a_{ij})_{k\times n}, \underline{x}\in\mathbb{R}^n, \underline{b}\in\mathbb{R}^k.$

Here, we instead have constraints $A\underline{x} \leq \underline{b}, \underline{x} \geq \underline{0}$ with the objective $\max \leftarrow \underline{c}^T \cdot \underline{x} = \sum_{i=1}^n c_i x_i \ (\underline{c} \in \mathbb{R}^n)$ (**Primal Linear Program**). We call a set of constraints **feasible** if \exists solution. The **Dual Linear Program** has constraints $A^T\underline{y} \geq \underline{c}, \underline{y} \geq \underline{0}$ and objective $\min \leftarrow \underline{b}^T \cdot y = \sum_{j=1}^k b_j y_j$.

Proposition (mini-theorem): $\forall \underline{x}, \underline{y}$, if \underline{x} satisfies the Primal Linear Program and \underline{y} satisfies the Dual Linear Program, then $\underline{c}^T\underline{x} \leq \underline{b}^Ty$

 $\therefore \max(\text{primal}) \leq \min(\text{dual})$

Proof:
$$\underline{c} \leq A^T \underline{y} \iff c^T \leq y^t A$$

 $\underline{c}^T \cdot \underline{x} \leq \underline{y}^T A \underline{x} \leq y^T b$

The two sides of this inequality are in fact equal.

Duality Theorem of Linear Programming: If both the primal and the dual are feasible, then max(primal) = min(dual)

DO!!: Infer $\nu^* = \tau^*$ from LP duality.

Lovász: (a) $\tau^* \leq \tau \leq \tau^* (1 + \ln \deg_{\max})$, where \deg_{\max} is the max degree in the hypergraph ("integrality gap"). (b) Greedy algorithm finds such a cover

Permanent Inequality: $A \in M_n(\mathbb{R})$, $\operatorname{per}(A) = \sum_{\sigma \in S_n} \prod_{i=1}^n a_{i,\sigma(i)}$; stochastic matrix $A = (a_{i,j}) \in M_n(\mathbb{R})$, $a_{i,j} \geq 0$, $\forall i \sum_j a_{i,j} = 1$; doubly stochastic A has A^T also stochastic, i.e., columns each sum to 1.

Exercise: If A stochastic, then $per(A) \leq 1$.

Pf:
$$1 = \prod_{i=1}^{n} (\sum_{j=1}^{n} a_{ij}) = \sum (n^n \text{ terms }) \ge \sum (n! \text{ terms }) = \text{per}(A)$$

Note J: all ones has $\frac{1}{n}J$ doubly stochastic and $\operatorname{per}(\frac{1}{n}J)=n!/n^n$, while $\operatorname{per}(I)=1$ and I is doubly stochastic matrix.

DO: Assume A is stochastic. Prove: $per(A) = 1 \iff A$ is a permutation matrix

Permanent Inequality: If A is doubly stochastic, then $per(A) \ge n!/n^n$

Recall $n!/n^n > e^{-n}$. (First, note $e^x = \sum_{k=0}^{\infty} x^k/k! > x^k/k!$, so $e^n > n^n/n! \iff n!/n^n > e^{-n}$.) We can use this to find the asymptotic log of the number of Latin squares of order $n, L(n) := \#\{n \times n \text{ Latin squares}\}$.

Theorem: $\ln L(n) \sim n^2 \ln n$

i.e., $L(n) < n^{n^2}$. Need to find lower bound on L(n).

#perfect matchings in a bipartite graph (n,n): $\operatorname{per}(A)$ for the incidence matrix A r-regular: $\frac{1}{r}A$ doubly stochastic, so $\frac{1}{r^n}\operatorname{per}(A) = \operatorname{per}(\frac{1}{r}A) > e^{-n} \implies \operatorname{per}(A) > (\frac{r}{e})^n$ $L(n) > \prod_{r=1}^{n-1}(\frac{r}{e})^n > \frac{[(n-1)!]^n}{e^{n^2}}$ $\ln L(n) > n \ln[(n-1)!] - n^2 \sim n^2 \ln n$