
Lecture Notes of Honors Combinatorics

Michael J. Cervia

Spring 2016

WARNING: With the exception of the class of May 26, these notes have NOT been proof-
read by the instructor. They contain many mistakes. Read these notes critically; use them
at your own risk.

1 Tuesday, March 29, 2016

Things expected to be known:

- modular arithmetic (congruences modulo m)
- asymptotic notation an ∼ bn ⇐⇒ an = O(bn)
- finite probability spaces: expected value and independence of random variables
- basic linear algebra (rank, determinant, eigenvalues)
[See online lecture notes.]

Graph: G = (V,E), where V is the set of vertices (singular: vertex) and E is the set of
edges (unordered pairs of vertices)

(e.g., V = {1, . . . , 5}, E = {{1, 2}, {1, 3}, {1, 5}, {2, 3}, {3, 4}, {4, 5}}; |V | = 5, |E| = 6)

Bipartite graph: V = V1 ∪ V2

Hypergraph: H = (V, E), E = {A1, . . . , Am}, Ai ⊆ V, [Ai = Aj is permitted.]

Hypergraph ⇐⇒ bipartite graph; edges: if vi ∈ Aj

If x ∈ V , then deg(x) := #{i | x ∈ Ai}

Handshake Theorem:
∑
x∈V

deg(x) =

m∑
i=1

|Ai|

Proof: Count pairs; [“Actuary Principle”]
#{(x, i)|x ∈ Ai}
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=:
∑

x deg(x) (counting by x)
=:
∑

i |Ai| (counting by i)

Incidence matrix: n×m matrix, Mij =

{
1 if xi ∈ Aj
0 otherwise

Regular Hypergraph: if every vertex has same degree r ⇐⇒ r-regularity

Uniform Hypergraph: every edge has same number of sites k ⇐⇒ k-uniformity

Graph (alt.): 2-uniform hypergraph without multiple edges

Notation: n = #vertices, m = #edges

r-uniform, k-regular hypergraph =⇒ nk = mr; for graphs, n · k = 2m

Hypergraph without multiple edges then m ≤ 2n

Intersecting hypergraph: every pair of edges intersects

HW: For intersecting hypergraphs, prove m ≤ 2n−1 (2-line proof)

k-uniform hypergraph: maximum #edges =
(
n
k

)
k-uniform, intersecting: max =

(
n−1
k−1

)
? – Only half of the time!

HW: For every n ≥ 3 and a lot of values of k: find intersecting k-uniform hypergraphs
with >

(
n−1
k−1

)
edges (i.e. lot of values ⇐⇒ →∞ as n→∞)

CH: If H is regular, of deg ≥ 1, k-uniform, intersecting =⇒ k >
√
n

Def: A finite projective plane is a hypergraph such that

(i) all pairs of points have exactly one line (i.e. hyperedge) through them
(ii) all pairs of lines are intersecting at exactly one point
(iii) (nondegeneracy axiom) ∃ four points with no 3 on a line

(e.g., Fano plane, 3-regular, 3-uniform, with 7 points and 7 lines)

[Turn in HW problems. CH problems have no strict deadline, but they are over when
discussed in class; email when working on them as a warning, so Babai will avoid discussing
in class. Don’t turn in DO problems]

DO: A finite projective plane (alt.) is:

(a) regular (r-regular)
(b) uniform (k-uniform)
(c) k = r := n+ 1
(d) #points = #lines = n2 + n+ 1
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Projective geometry over R:

e.g., x := (x1, x2, x3) ∼ λ(x1, x2, x3) =: λx;
points are equivalence classes of triples.
Take R3 − {0}. point p has coordinates (x1, x2, x3)→ homogeneous coordinates

Projective line: corresponds to 2-dim subspace of R3, homogeneous coordinates of a line: a;
a · x = a1x1 + a2x2 + a3x3 = 0

F, Finite Field: finite #elements with 2 operations +, · satisfying usual axioms (like in
R)

|F| = q: A finite field of order q exists ⇐⇒ q = pk prime power

e.g., 3 · 3 ≡ 0 mod 9

Galois Fields (finite fields), GF (q) = Fq; ∀q,∃! Galois field of order q

PG(2, q) : projective plane over GF (q)

#points:
|F3
q | = q3 (#triples (x1, x2, x3))

|F3
q − {0}| = q3 − 1

|Fq − {0}| = q − 1 size of equivalence classes

#points = #lines = #equivalence classes =
q3 − 1

q − 1
= q2 + q + 1

OPEN: For what values of n (i.e. set of these numbers named P) does there exist a
projective plane of order n?

We know: If q is a prime power, then q ∈ P
Also know: infinitely many values of n ∈ P
No n that is not a prime power is known to belong to P
Smallest n of unknown status: n = 12
6 /∈ P ∼ 1990, tedious
10 /∈ P ∼ 199X

Fp, p prime: field; Fp[i] = {a+ bi | a, b ∈ Fp, i2 + 1 = 0}

Likewise, C = R[i]

HW: For what p is Fp[i] a field? ⇐⇒ When are there no zero-divisors: z1z2 = 0 =⇒
z1 = 0 or z2 = 0

Experiment! Discover simple pattern by looking at primes < 30
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2 Thursday, March 31, 2016

Tuesday, April 5: QUIZ

TA: Joseph Tsong

Office hr: Monday 4:30-5:30, Young 208A

P := {orders of finite projective planes}. If q is a prime power field then q ∈ P.

Bruck-Ryser Theorem:

If n ≡ 1 or 2 mod 4 and n ∈ P, then ∃a, b : n = a2 + b2.
Bruck-Ryser gives us only:

in P: 2, 3, 4, 5, 7, 8, 9, 11, 13
not in P: 6, 14
don’t know: 12
no 10

Latin Square, n× n: [i.e., solved Sudoku puzzle and superpositions thereof]

3 1 2

2 3 1

1 2 3

,

11 23 32

22 31 13

33 12 21

=

1 2 3

2 3 1

3 1 2

&

1 3 2

2 1 3

3 2 1

E.g., Euler: “36 officers’ problem” wanted a pair of orthogonal 6× 6 Latin squares

HW: If n is odd ≥ 3, then ∃ pair of n× n orthogonal Latin squares.

DO: If ∃ pair of k×k orthogonal Latin squares and a pair of l× l orthogonal Latin squares,
then ∃ pair of kl × kl orthogonal Latin squares.

DO: If q is a prime power ≥ 3, then ∃ pair of orthogonal Latin squares

∴ If n ≥ 3 and n 6≡ 2 mod 4, then ∃ pair of orthogonal Latin squares.

Theorem: @ pair of 6× 6 orthogonal Latin squares.

Bose-Shrikhande-Parker: 6 is the only exception.

DO: (a) If ∃m pairwise orthogonal n×n Latin squares, then m ≤ n− 1 (b)∃n− 1 pairwise
orthogonal n× n Latin squares, then ∃ projective plane of order n

DO: Dual of a projective plane is a projective plane.

“Possibly degenerate projective plane”

(i) every pair of points is connected by a line
(ii) every pair of lines intersects
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(iii) there is a triple of points not on a line.

DO∗: the only degenerate projective planes are a bunch of points on a line all also having
a line through another point off to the side of the main line.

H: k-uniform intersecting hypergraph

If H is a possibly degenerate projective plane, p: point, l: line

Lemma: p · l =⇒ deg(p) = |l|

(all lines touch n+ 1 points: #points = 1 + n(n+ 1) = n2 + n+ 1)

Galois plane over Fq: points [a, b, c], a, b, c ∈ Fq (homogeneous coordinates), not all are
zero; (a, b, c) ∼ (λa, λb, λc), λ 6= 0. p: homogeneous coordinates for point p, l: homogeneous
coordinates for line l

Claim: p1, p2, p3 not on a line, i.e., if a · pi = 0, i = 1, 2, 3, then a = 0.

DO: finish

p · l if p · l = 0 (i.e.,
∑
pili = 0)

CH: Fundamental Theorem of Project Geometry: If (p1, . . . , p4) and (q1, . . . , q4)
are quadruples of points in PG(2,F) in general position (no 3 on a line), then ∃f :
{points} → {points} collineation such that f(pi) = qi (collineation: ∃f−1, preserves
collinearity)

Theorem ((Paul) Erdös - (Chao) Ko - (Richard) Rado): if k ≤ n/2 then m ≤(
n−1
k−1

)
Lemma: H regular, uniform hypergraph H = (V, E), 0 ≤ α ≤ 1, R ⊆ V “red vertices.”
Assume ∀A ∈ E , |R ∩A| ≤ αk. Then, |R| ≤ αn.

DO: False if we omit regularity:

Prove ∃ uniform hypergraph without isolated (i.e., deg = 0) vertices (i.e., ∪E = V ) and
R ⊆ V such that

(a) ∀A ∈ E , |R ∩A| ≤ k/10 and
(b) |R| ≥ 9n/10.

“Lubell’s permutation method”

S = {σ : cyclic permutations of V }(
V
k

)
=set of all k-subsets of V

edge: A is an arc on σ; “A and σ are compatible”

(
(
n−1
k−1

)
/
(
n
k

)
= k/n)

DO: Lemma: At most k edges ofH are compatible with a given σ (assuming k ≤ n/2)

5



3 Tuesday, April 5, 2016

Recall: If H is simple, intersecting, then m ≤ 2n−1. (Simple(st)) Proof: Take V as A ∪ Ā.
Since A, Ā are disjoint, only one can be in the set of hyperedges we construct; we are using
Pigeonhole Principle.

Erdös-Ko-Rado: If k ≤ n/2, intersecting simple k-uniform hypergraph H = (V, E), then
m ≤

(
n−1
k−1

)
.

Lemma 1: L = (W,F), k-uniform, regular, red verices R ⊆ W , and 0 ≤ α ≤ 1. If every
edge has ≤ αk red vertices then |R| ≤ αn.

Suppose hypergraph is r-regular. Look at {(V,E) | v ∈ R}; here, |{(V,E) | v ∈ R}| =
r|R| ≤ mαk, so |R| ≤ αmk/r = αn (recall mk = rn).

Lemma 2: n points in cycle and k-arc(s) where k ≤ n/2. Set C of k-arcs that pairwise
intersect. Prove: |C| ≤ k.

Lemmmas 1 & 2 =⇒ EKR: take a hypergraph with
(
n
k

)
vertices and (n− 1)! edges, which

correspond to the cyclic permutations σ of the labels on the vertices. Then, define edges
A ⊆ V , |A| = k and incidence by: (σ,A) incident if A is an arc on σ. Let us call this new
hypergraph L. L is n-uniform (there are n possible arcs) and regular (by symmetry). Red
points can be defined here as the edges in E . By Lemma 2, ≤ α = k/n proportion of every
edge in L is red. ∴ |E| = |R| ≤ |W |k/n. Here, |W | =

(
n
k

)
; ∴ m = |E| = |R| ≤

(
n
k

)
k/n =(

n−1
k−1

)
. QED (This is Lubell’s permutation method.)

Polarity in a projective plane P = (P,L, I); where P = {points}, L = {points}, incidence
relation I = {(p, l)|p · l}; is f : P → L, a bijection, such that ∀p, q ∈ P, p · f(q) ⇐⇒
q · f(p).

HW: Prove: every Galois plane has a polarity.

Finite probability spaces, (Ω,P):

Ω “sample space”: nonempty set,
P = probability distribution over Ω,

P : Ω→ R such that ∀a ∈ Ω P(a) ≥ 0
a is an elementary event, P(a) is a probability, and

∑
a∈Ω P(a) = 1.

Outcomes of an experiment: e.g., n coin flips HTTTHTHHT: |Ω| = 2n, poker hand 5 cards
out of the standard deck of 52 cards

(
52
5

)
.

Event: A ⊆ Ω,P(A) :=
∑

a∈A P(a)

Uniform distribution: ∀a ∈ Ω,P(a) = 1/n, n = Ω.
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If uniform, then P(A) = |A|/|Ω| = #“good cases”/#“all cases”.
(
n
k

)
/2n = P(k heads in n

fair coin flips).

Random variable over the probability space Ω,P is a function X : Ω→ R

DEF: Expected (or Mean) Value of a random variable E(X) =
∑

a∈ΩX(a)P(a) =∑
y∈Range(X) y · P(x = y) weighted average of the values of X.

“X = y”= {a ∈ Ω | X(a) = y}

DO: minX ≤ E(X) ≤ maxX.

Indicator variable: takes value 0 or 1, equivalent to events

θA: indicator of event A, θA(a) =

{
1 if a ∈ A
0 if a /∈ A.

|Ω| = n =⇒ there are 2n indicator variables.

E(θA) = 1·P(θA = 1)+0·P(θa = 0) = P(A), i.e. “θA = 1”=A and P(θA = 1) = P(A).

DO: Linearity of expectation: IfX1, . . . , Xk are random variables over (Ω,P) and c1, . . . , ck ∈
R, then E(

∑
ciXi) =

∑
ciE(Xi)

DO: Use this to prove: E(#heads in n coin flips) = n/2. Hint: write X =
∑n

i=1 Yi, Yi:
indicator of event “ith flip in heads”

Random permutations of a set of S of n elements, bijections π : S → S. |Ω| = n!.

Notation: [n] = {1, . . . , n}.

E.g., S = [10], π(S) = {7, 5, 4, 6, 1, 10, 8, 9, 2, 3, 11}

HW: Let X be the length of the cycle through point 1. P(X = k) = 1/n.

P(X = 1) = (n− 1)!/n! = 1/n,P(X = n) = (n− 1)!/n! = 1/n.

HW: Let Y : #edges. Prove: E(Y ) ∼ lnn

4 Thursday, April 7, 2016

Consider the cardgame Set, with 81 cards each endowed 4 attributes (i.e. card∈ F4
3):

ternary color, number (1,2,3), shape (circle, diamond, squiggle), shading (completely shaded,
partially shaded, not shaded)

Set: 3 cards such that in each attribute, either each card same or all different, i.e. SET =
{(x, y, z) | distinct components, such that x+ y + z = 0}
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Note that Fn3 := {(x1, . . . , xn) | xi ∈ F3}

HW: n-dimensional “SET” is a 3-uniform hypergraph with 3n vertices. Assuming that it
is regular, what is the degree of its vertices?

H = (V ;A1, . . . , Am),W ⊆ V independent if ∀i, Ai 6⊆ W , α(H) =independence num-
ber=size of largest independent set

αk := α(n-dim SET game)

HW: αk+l ≥ αkαl
DO: Fekete’s Lemma: If {an} is super multiplicative (an > 0), i.e. ak+l ≥ akal, then
∃ limn→∞ n

√
an = supn{ n

√
an}

Corollary: ∃ lim n
√
αn = sup n

√
αn =: L; 2n ≤ αn ≤ 3n, 2 ≤ L ≤ 3

HW: L > 2. (You may use information on ordinary SET game on web.)

OPEN: L > 3? Best (Meshulam): αn < 2 · 3n/n. (Proof: character of finite abelian
groups.)

χ: chromatic number

legal coloring: no edge becomes monochromatic of vertices

H hypergraph, optimal coloring: χ(H) = min #colors in a legal coloring

HW: (a) α(H)χ(H) ≥ n.

(b) use this to prove: χ(n-dim SET)→∞ (use a result stated)

DO: χ(FANO) = 3

DO MAYBE: χ(PG(2, 3), PG(2, 4)), where 3 and 4 corresponds to F3 and F4, respec-
tively

HW: (a) If H is k-uniform and m ≤ 2k−1 (k ≥ 2), then χ(H) ≤ 2. (Hint: union
bound)

(b) If P is a projective plane of order n ≥ 5 then χ(P) = 2.

Finite probability spaces: A1, . . . , At ⊆ Ω events

DO: Union bound P(∪ti=1Ai) ≤
∑k

i=1 P(Ai) Proof: induction on t

Events A,B are independent: P(A ∩B) = P(A)P(B)

A,B,C are independent: pairwise independence and P(A∩B∩C) = P(A)P(B)P(C)

DO: Find small probability space and 3 events satisfying P(A ∩ B ∩ C) = P(A)P(B)P(C)
but not pairwise independence
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DO: A and A are independent ⇐⇒ ?

A1, . . . , At are independent if for I ⊆ [t] = {1, . . . , t}, P(∩i∈IAi) =
∏
i∈I P(Ai)

2t conditions I = ∅ : ∩i∈∅Ai = Ω,
∏
i∈∅ = 1

|I| = 1 true is actually 2t − t− 1 conditions

DO: If A1, . . . , At are independent, then A1, . . . , At−1, Āt = Ω−At are independent

∴ {A1 = A,A0 = Ā}, then Aξ11 , . . . , A
ξt
t are independent for all εi ∈ {0, 1}

A,B,C independent =⇒ A,B ∪ C independent

DO: Generalize the above to all Boolean combinations ∪,∩,− with a finite set of events

X1, X2, . . . , Xt random variables over (Ω,P) are independent if ∀x1, . . . , xt ∈ R,P(X1 =
x1, . . . , Xt = xt) =

∏t
i=1 P(Xi = xi)

DO: If X1, . . . , Xt are independent, then all their subsets are independent.

DO: events A1, . . . , At are independent ⇐⇒ indicator variables θA1 , . . . , θAt are indepen-
dent

Markov’s Inequality: Suppose X is a positive random variable X ≥ 0, a > 0. Then
P(X ≥ a) ≤ E(X)/a

DO: Prove Markov’s Inequality in one line

Variance Var(X) = E((X − E(X))2). Write m = E(X) for now. Then, we immediately
have Var(X) = E(X2)− 2mE(X) +m2 = E(X2)−m2 = E(X2)− E(X)2

Corollary (Cauchy-Schwartz inequality): E(X2) ≥ E(X)2

DO: Compare with other forms of the Cauchy-Schwartz inequality

Covariance Cov(X,Y ) = E(XY )− E(X)E(Y ).

Var(X) = Cov(X,X)

DO: If X,Y are independent, then E(XY ) = E(X)E(Y ). If X1, . . . , Xt are independent,
then E(

∏
Xi) =

∏
E(Xi).

If X,Y independent, then Cov(X,Y ) = 0 (i.e., X,Y uncorrelated)

HW: Show X,Y independent 6⇐= Cov(X,Y ) = 0 (Make Ω small)

Y = X1 + . . .+Xt

Var(Y ) = E(Y 2)− E(Y )2 = E(
∑

i

∑
j XiXj)−

∑
i

∑
j E(Xi)E(Xj)

=
∑

i

∑
j(E(XiXj)− E(Xi)E(Xj)) =

∑
i

∑
j Cov(Xi, Xj)
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=
∑

i Var(Xi) +
∑

i 6=j Cov(Xi, Xj) =
∑

i Var(Xi) + 2
∑

i<j Cov(Xi, Xj)

Random graphs

Erdös-Renyi Model with p = 1/2: fix V , |V | = n. E(#edges) =
(
n
2

)
/2, Tn = E(#triangles)

(DO: use linearity of expectation)

DO: Find exact formula and find asymptotic value of variance Var(Tn) ∼ a · nb, find
a, b

5 Tuesday, April 12, 2016

SUBSTITUTE: Prof. Alexander Razborov

Binomial Theorem: (x + y)n =
∑n

j=0

(
n
j

)
xjyn−j ; here, we will more simply write this

without y, (1 + x)n =
∑n

j=0

(
n
j

)
xj .

Then, we have
∑

j=0

(
n
j

)
= 2n,

∑
j=0(−1)j

(
n
j

)
= 0. More cleverly we could also try x =√

3i =
√
−3 to find (1/2− i

√
3/2)3 = 1, or equivalently (1− i

√
3)3m = ±2−3m.

Now, consider f ′(x) : n(1 + x)n−1 =
∑n

j=0 j
(
n
j

)
xj−1. For example, we find x = 1 =⇒∑n

j=0 j
(
n
j

)
= n2n−1.

Also, we can iterate the formula to obtain (1 +x)2n =
∑2n

k=0 x
k
∑k

j=0

(
n
j

)(
n
k−j
)
, from which

we can find
(

2n
n

)
=
∑n

j=0

(
n
j

)(
n
n−j
)
.

(Formal) Power series: (a0, a1, a2, . . . , an, . . .)→ Generating function G(x) = a0 + a1x+
a2x

2 + a3x
3 + . . .+ anx

n + . . .

For example, |an| ≤ ckn where c, k are arbitrary constants. In the case (c, k) = (−1/k,−1/k),
we obtain Taylor series

We can do some operations on generating functions:

multiply by constants: αG1(x)
add such functions: (G1(x) +G2(x))
multiply such functions:
(a0 + a1x+ . . .)(b0 + b1x+ . . .) = (c0 + c1x+ . . .),

where ck = a0bk + a1bk−1 + . . .+ akb0 (a Recurrent relation).

even divide them given G2(0) 6= 0, a0 6= 0: G1(x)
G2(x) = c0+c1x+c2x2+...

a0+a1x+a2x2+...
= (b0 + b1x+ b2x

2 + . . .)

Recall the examples:

G(x) = 1 + x/1! + x2/2! + x3/3! + . . .+ xn/n! + . . . = ex (here G′(x) = G(x))
G(x) = x− x3/3! + x5/5! . . . = sinx
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We have the fact (1 +x)r =
∑∞

j=0

(
r
j

)
xj and one from analysis: for arbitrary r we can take

(xr)′ = rxr−1. Note for arbitrary r, as long as j is an integer, we have
(
r
j

)
= r(r−1)···(r−j+1)

j! .
Using these facts we can find that

(1 + x)−n =
∑∞

j=0

(−n
j

)
xj =

∑
j

(−n)(−n−1)···(−n−j+1)
j! xj

=
∑

j(−1)j
(
n+j−1

j

)
xj =

∑
(−x)−j

(
n+j−1
n−1

)
Replacing i = n+ j− 1, we can rearrange to obtain xn−1(1−x)−n =

∑
i x

i
(

i
n−1

)
, an useful

formula which we can apply to find:

1
1−x = 1 + x+ x2 + . . .+ xn + . . .
x

(1−x)2
= x+ 2x2 + 3x3 + . . .+ nxn + . . .

x2

(1−x)3
= 2·1

2 x
2 + 3·2

2 x
3 + 4·3

2 x
4 + . . . (n+2)(n+1)

2 xn+2 + . . .

Here, we have applications to recurrence relations, Fibonacci numbers(F0 = 0, F1 = 1, Fn+
Fn−1), and rational functions.

Rational functions: p(x)/q(x), where p, q are polynomial, deg p < deg q, and q(x) =
1− u1x− u2x

2 − . . .− udxd

G(x)q(x) = p(x); we can obtain ak = u1uk−1 + uduk−d

Overall, we have determined “Rational functions≡recurrence relations”

q(x) = a(x−λ1)(x−λ2) · · · (x−λd), λ1, . . . , λd are pairwise distinct. Take p(λ)
(x−λ1)(x−λ2)···(x−λd) =

α1
x−λ1 + . . .+ αd

x−λd to express generating functions

So, we can approach the Fibonacci sequence Fn = Fn−1 + Fn−2 with a formula. Note
x

1−x−x2 = c0
x−λ1 + c1

x−λ2 . We can obtain Fn = (λn1 − λn2 )/
√

5, where λ1 = (1 +
√

5)/2 and

λ2 = (1−
√

5)/2

Now, let us consider the Drunkard’s/Random Walk: we want to find an, the expected
number of steps it takes to get Home, which we take to be at the point 0, while we have
the drunkard or frog start from a position n. We may find that an = 1 + an−1+an+1

2 , so
an+1 = 2an − an−1 − 2, q(x) = 1− 2x+ x2 = (1− x)2.

Take a generating function G(x) =
∑

n anx
n and compute G(x)(1 − x)2 which we can

expand to recognize as −2
1−x .

6 Thursday, April 14, 2016

SUBSTITUTE: Prof. Razborov
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Recap: Take a generating function G(x) such that G(x)(1− x2) =?+?− 2x2 − 2x3 − . . . =

L(x)− 2
1−x . So, we write G(x) = L(x)

(1−x)2
− 2

(1−x)3
= p(x)

(1−x)3
, and note 1

(1−x)3
≈ + . . .+

(
n
3

)
xn+

. . . Meanwhile, our recurrence relation also gives an+2 = 3an+1 − 3an + an−1. Moreover,
we see that our steps needed to get back home converges.

Binary trees: n nodes, bn = #trees, and we count the number of branches that go
leftward from a node l and those that go rightward k. Then k+ l = n− 1. Also, we obtain
the recurrence relation bn = b0bn−1 + b1bn−2 + . . .+ bn−1b0.

We can represent this relation with a generating function so that 1 + xG(x)2 = G(x),

which has solutions G1(x) = 1+
√

1−4x
2x and G2(x) = 1−

√
1−4x

2x , but only G2 is still analytic
at x = 0, so we choose this one as our generating function.

Meanwhile, we can write (1 − 4x)1/2 =
∑∞

k=0(−4)k
(1/2
k

)
xk. Here, the coefficients are(1/2

k

)
= (1/2)(−1/2)(−3/2)···

k! and thus we obtain bn =
(

2n
n

)
/(n+1), Catalan numbers.

Now, consider the Young tableau If we have i1, . . . , ik squares in rows 1, . . . , k, respec-
tively, then we can count the total number of representations of the table i1 + 2i2 + 3i3 +
. . . + kik = n. Equivalently, we can write xn = xi1x2i2 · · ·xkik = xi1(x2)i2 . . . (xk)ik . Then
we can write a generating function

G(x) =
∑

n pnx
n

= (1 + x+ x2 + . . .+ xn + . . .)(1 + x2 + x4 + x6 + . . .)(1 + x3 + x6 + x9 + . . .) · · ·

=
1

1− x
1

1− x2

1

1− x3
· · · 1

1− xk
· · · ,

i.e. xnpn ≤ G(x) =
∏∞
k=1

1
1−xk , x ∈ (0, 1), where pn ≤ 1

xn
∏∞
k=1

1
1−xk . This implies that

ln pn ≤ −n lnx −
∑∞

k=1 ln(1 − xk). Note ln(1 − x) =
∑

j
xj

j and ln(1 − xk) =
∑

j
xjk

j .

We need to sum over such terms:
∑∞

k=1

∑∞
j=1

xjk

j =
∑∞

j=1
1
j

∑∞
k=1 x

jk. So, we obtain

ln(1− xk) =
∑∞

j=1
1
j

xj

1−xj .

Meanwhile, we have 1− xj ≥ j(1− x)xj−1 = jxj−1 − jxj , since (j − 1)xj ≥ jxj−1 − 1. So,

ln(1− xk) ≤ x
1−x

∑∞
j=1

1
j2

. Thus, ln pn ≤ −n lnx− x
1−x = x

1−x
π2

6 .

Kruskal-Katona Theorem: F ⊆
([n]
k

)
, |F| = m, ∂F ⊆

( [n]
k−1

)
= {G ∈

( [n]
k−1

)
| ∃F ∈

F such that G ⊆ F̄}. How small can ∂F be? If m =
(
x
k

)
, where x ≥ k, then |∂F| =(

x
k−1

)
= x(x−1)···(x−k+1)

k! .

The theorem in Lovasz’s form: For every m =
(
x
k

)
, |∂F| ≥

(
x
k−1

)
.

12



7 Tuesday, April 19, 2016

For hypergraphs without multiple edges H = (V, E) and H′ = (V ′, E ′), an isomorphism
is a bijection f : V → V ′ such that ∀F ⊆ V, F ∈ E ⇐⇒ f(F ) ∈ E ′. Likewise, H and H′
are isomorphic, i.e. H ∼= H′, if ∃f : H → H′ isomorphism.

An automorphism of H is a function f : H → H that is an isomorphism. Equivalently,
it is a permutation of V .

DO: #automorphisms of Fano = #hours in a week. Note that this is the 2nd smallest
nonabelian simple group. (The smallest is A5, since |A5| = 60.)

Sn : group of permutations of [n], symmetric of degree n. |Sn| = n! is the order of the
symmetric group. A subgroup G ≤ Sn is a permutation group of degree n

G is transitive if ∀i, j ∈ [n],∃σ ∈ G such that σ(i) = j.

H is vertex-transitive if Aut(H), the automorphism group, is transitive.

DO: Fano plane is vertex-transitive, as are all other Galois planes.

DO: SETd is vertex-transitive.

Observation: vertex-transitive =⇒ regular

DO: regular 6 =⇒ vertex-transitive. (Find smallest graph with k = 2.)

DO: Platonic solids, as graphs, are vertex-transitive, edge-transitive, face-transitive, and
in fact flag-transitive

Unrelatedly, note from an earlier HW problem: χ(SETd)→∞ as d→∞ due to the best
lower bound on optimal coloring χ: χ ≥ n/α ≥ 3d/(2 · 3d/d) = d/2, using Meshulam’s
Theorem.

Also, note events A and B are disjoint if P (A ∩B) = 0.

DO: Union bound yields equality ⇐⇒ the events are pairwise disjoint.

This fact is important to note while showing before that

P (illegal coloring) ≤
∑
E∈E

P (E monochromatic) = m/2k−1 ≤ 1

DO: If a projective plane has order ≥ 3, then χ = 2.

Also, returning to the drunkard’s problem: note that, if the drunkard takes n steps, then,
in order to get home (initial position) n must be even, P (getting home at the 2nth step) =(

2n
n

)
/22n.

13



Also, we can find that a walk (x-y graph of location vs. time) will cross the x axis a certain
number of times. Each segment between closest times at which the drunkard reaches the
x axis will have a twin path could have been taken in that give walk, i.e. the same path
reflected about the x axis. This reflection principle implies that, instead of counting(

2n−2
n−1

)
non-crossing walks, we can neglect

(
2n−2
n

)
walks. More precisely,

#non-crossing walks =

(
2n−2
n−1

)
−
(

2n−2
n

)(
2n−2
n−1

) = 1−
(

2n−2
n

)(
2n−2
n−1

) = 1− n− 1

n
=

1

n
.

Thus, we find the Catalan numbers
(

2n−2
n−1

)
/n. (We can shift using n = n′+ 1 to obtain the

numbers’ usual formula.)

DO:
(

2n
n

)
/22n ∼ 1/

√
πn (Note 22n =

∑2n
k=0

(
2n
k

)
.)

P (getting back in 2n steps for first time) = 1
n

(
2n
n

)
/22n ∼ 1/

√
πn3

HW: E(#steps for drunkard to get home for first time) asymptotically. [You can use Stir-
ling’s formula.]

8 Thursday, April 21, 2016

Erdös-Szekeres: ∀a1, ar, akl+1 ∈ R,

(i) ∃ increasing subsequence of length k + 1
or (ii) ∃ non-increasing subsequence of length l + 1

Need kl pigeon holes: {(i, j) | 1 ≤ i ≤ k, 1 ≤ j ≤ l}. Assume (i) and (ii) fail. Consider
a map of indices to pigeonholes r 7→ (i, j). We want i = length of longest increasing
subsequence ending in ar and j = length of largest non-increasing subsequence ending in
ar. Suppose we map ar 7→ (i, j) and as 7→ (i′, j′).

Case 1: ar < as. Then i′ ≥ i+ 1.
Case 2: ar ≥ as. Then j′ ≥ j + 1.

Erdös took Prof. Babai, at 16, to his mother’s home for lunch once, as Babai was
amongst the “epsilons” of rising mathematicians. He asked Babai a first test question:
A ⊆ {1, . . . , 2n}; what is the smallest size of A such that it certainly has two consecutive
elements? Incidentally, the prodigy P’osa was an epsilon in 7th grade and solved the same
question quickly, only hesitating for a moment after raising his spoon while eating. There
was a second problem Erdös would ask, whose answer was that one of the elements of A
divides another.

H = {V ;A1, . . . , Am}, Ai ⊆ V . If i 6= j, then |Ai ∩ Aj | = 1. Find maxm as a function of
n.

14



Easy attempts: Consider edges that are 2-sets all with one vertex of mutual intersection,
giving n − 1 edges; we can then add an edge containing only that intersection or an edge
containing all vertices but that intersection, yielding a total of n edges.

Alternatively, one could find using a map to a finite projective plane to also obtain an
m = k2 + k + 1.

Erdös-deBruijn: m ≤ n.

Generalized Fisher inequality: Fix λ ≥ 1. |Ai ∩ Aj | = λ. Then, m ≤ n. (Fisher
∼ 1930 in the Journal of Eugenics [for plants]. This inequality for uniform hypergraphs,
which is more general than this result, was found by R.C. Bose in 1949 and Majumdar in
1955.)

Proof: Incidence matrix: M = (mij) =

 0 1 1 0
1

, mij =

{
1 if j ∈ Ai
0 if j /∈ Ai

. Ai 7→

vi : incidence vector of Ai, vi ∈ Rn.

Claim: Under the conditions of the theorem, v1, . . . , vm are linearly independent. ∴ m ≤ n
A,B ⊆ V , define dot product: x, y ∈ Rn, x · y =

∑
xiyi

vA · vB = |A ∩B|
vA · vA = |A ∩A| = |A|

Thm∗: v1, . . . , vm ∈ Rn, vi · vi > λ, vi · vj = λ, (i 6= j). Then, the vi are linearly independent.

Case 2: ∀i, |Ai| > λ
Case 1: ∃Ai, |Ai| = λ

Sunflower: A1, . . . , Am such that ∃k “kernel”: ∀i,K ⊆ Ai and ∀i 6= j, Ai ∩Aj = K

Need to show: ∀α1, . . . , αm ∈ R, if
∑
αivi = 0, then α1 = . . . = αm = 0

0 = (
∑m

i=1 αivi) · vj =
∑m

i=1 αi(vi · vj) = λ
∑m

i=1 αi + αj(vj · vj − λ) = λT + αj(kj − λ),
where T =

∑m
i=1 αi, |Aj | = kj

So, αj = −λT
kj−λ

T =
∑
αj = −λT

∑ 1
kj−λ

=⇒ 0 = T (1 + λ
∑ 1

kj−λ)

=⇒ T = 0 b/c other term is positive =⇒ αj = 0 b/c αj = −λ
kj−λT

Now, consider Clubtown, where there are V = {citizens}, clubs A1, . . . , Am, Ai 6= Aj , |Ai|
even. In Eventown, |Ai ∩Aj | even

DO: Find 2b
n
2
c clubs

REWARD: 2b
n
2
c is maximum

m ≤ 2n

15



DO: m ≤ 2n−1 (max #even subsets = 2n−1)

CH: Every maximal Eventown system is maximal.

9 Tuesday, April 26, 2016

Consider the problem: Given α, β ≥ 0; ∀i 6= j, |Ai ∩ Aj | ∈ {α, β} find an example of H
such that m = n

All 2-element sets
(
n
2

)
sets with intersection sizes L = {0, 1}

All sets of size ≤ 2:
(
n
2

)
+ n+ 1 =

(
n
2

)
+
(
n
1

)
+
(
n
0

)
.

s intersections: L = {l1, . . . , ls}
All s-subsets:

(
n
s

)
uniform

All sets of size ≤ s:(
n
s

)
+
(
n
s−1

)
+ . . .+

(
n
1

)
+
(
n
0

)
non-uniform.

Ray-Chaudhuri-Wilson Theorem (1964): IfH is uniform and s ≤ n/ and L-intersecting
then m ≤

(
n
s

)
, where s = |L|. (H is L-intersecting if ∀i 6= j, |Ai ∩Aj | ∈ L.)

Non-uniform RW Theorem (Frankl-Wilson (1980)): If H is L-intersecting, then
m ≤

(
n
s

)
+
(
n
s−1

)
+ . . .+

(
n
1

)
+
(
n
0

)
Proof [of “non-uniform”] (Babai 1988): x, y ∈ Rn f(x, y) =

∏s
i=1(x · y − li).

vi is an incidence vector of Ai
for j 6= k, f(vj , vk) =

∏s
i=1(vj · vi − li) = 0, where vj · vk = |Aj ∩Ak|

for j = k, f(vj , vj) 6= 0?
No: if |Aj | ∈ L, then we get 0.

Suppose f(vj , vk) = 0 ⇐⇒ j 6= k.
fj(x) = f(x, vj), m polynomials in n variables each

Claim: then f1, . . . , fm are linearly independent.
P(n, s) = space of polynomials of degree ≤ s in variables x1, . . . , xn
α0 + α1x1 + . . .+ αnxn +

∑
i<j αijxixj +

∑
βjx

2
j , a polynomial with

n+ 1 +
(
n
2

)
+ n terms.

DO: general case:
(
n
s

)
(1 + o(1)) (i.e.

(
n
s

)
(1 + an) where an → 0 as n→∞)

HW: Find exact dim, a closed-form expression–very simple. Need to count: monomials of
deg ≤ s, deg(x3

1x2x5x
2
7) = 1.

Proof of Claim: Suppose γ1f1 + . . .+ γmfm = 0
Need to show: γ1 = . . . = γm = 0
0 =

∑
j γjfj(vk) = γkfk(vk),∴ γk = 0

(fj(vk) = 0 if and only if k = j)

16



HW: Suppose f(vj , vk) =

{
6= 0 if j = k

0 if j < k
(i.e., triangular condition). (a) Prove the fj are

linearly independent. (b) The multilinearization of polynomials: x3
1x2x5x

2
7 7→ x1x2x5x7;

f 7→ f̃ . Show the f̃ are linearly independent. (Remember: the vj are (0, 1)-vectors)

THINK: Find an ordering of the Ai and fix the definition of fj such that the triangular
condition is true.

#multilinear polynomials of degree s :
(
n
s

)
count multilinear monomials of degree

(
n
s

)
Tuesday, May 3, 2016

Reviewing Quiz 2, Problem 1:

(a) find max r such that ∀x, 0 < x < r, anx
n → 0

an ≈ 4n, intuitively, but more precisely: an ∼ 4n/
√
πn by Stirling’s

DO: limn→∞ an+1/an = 4 – verify directly (no Stirling’s)

Note
∑2n

i=0

(
2n
i

)
= 22n = 4n, while

(
2n
n

)
> 4n/(2n+ 1) obviously > 3.9n

(b) Convergence radius r = 1/4: f(x) =
∑∞

n=0 anx
n = 1/

√
1− 4x

1/(1− 4x)α =
∑(−1/2

n

)
4nxn

Computing
(−1/2

n

)
from a DO problem into ordinary binomial coefficients

Then, we’d find we need to require α = −1/2.

Problem 2:

Taking 2n steps, total # walks that start at 0 and end at 0 in 2n steps:
(

2n
n

)
# =

(
2n
n−k
)

=
(

2n
n+k

)
Problem 4:

(X1, . . . , Xn): n integers 1 ≤ Xi ≤ 6
Sample space: |Ω| = 6n

E(
∑
Xi) =

∑
E(Xi) = 7n/2

Var(
∑
Xi) =

∑
Var(Xi) = nVar(Xi) b/c Xi pairwise independent

E(
∏
Xi) =

∏
E(Xi) = (7/2)n b/c Xi fully/mutually independent

Bonus:

bn = n2, bn = αbn−1 + βbn−2 + γbn−3 (homogeneous 3rd order recurrence)
cn = ∆bn = bn − bn−1=linear=2n− 1
dn = ∆cn = cn − cn−1=constant=2
∆dn = 0
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n2 − 3(n− 1)2 + 3(n− 2)2 − (n− 3)2 = 0: 1− 3 + 3− 1

HW problems discussed:

Q(n, 5): space of homogeneous polynomials of degree s in n variables
P(n, 5): space of homogeneous polynomials of degree s in ≤ n variables

Here, we have the equation k1 + . . .+ kn = 5, ki ≥ 0
from which we have to count #solutions in unknowns k1, . . . , kn
Using a stars and bars approach of counting:
we would have s stars and n− 1 bars, to obtain s+ n− 1 binary symbols

result:
(
n+s−1

s

)
Then, dimQ(n, s) =

(
n+s−1

s

)
and

dimP(n, s) =
∑

j≤s dimQ(n, j) =
(
n+s
s

)
= dimQ(n+ 1, s)

Claim: dimP (n, s) = dimQ(n+ 1, s)

DO:
∑s

j=0

(
n+j−1

j

)
=
(
n+s
s

)
Recall the definition/notation for f 7→ f̃ multilinearization (e.g., x3

1x4x
2
5 7→ x1x4x5)

Suppose Ω = Rn, fi polynomials, vi=(0,1)-vectors∈ {0, 1}n ∴ fi(vi) = f̃i(vi).

Setup: f1, . . . , fm functions over domain Ω, v1, . . . , vm ∈ Ω, fi(vj) =

{
6= 0 i = j

0 i < j
=⇒

f1, . . . , fm are linearly independent. (Proof uses induction on m; m = 1: X,m ≥ 2:
Suppose

∑
αifi = 0. Claim αm = 0. Plug in vm :

∑
αifi(vm) = αmfm(vm) = 0 =⇒

αm = 0 since fi(vm) = 0 unless i = m and fm(vm) 6= 0.)

Frankl-Wilson Theorem (Non-uniform version: Ray-Chandhuri-Wilson Theorem):
If A1, . . . , Am ⊆ [n], L = {l1, . . . , ls}, ∀i 6= j|Ai∩Aj | ∈ L, then m ≤

(
n
s

)
+
(
n
s−1

)
+. . .+

(
n
0

)
, by

considering all subsets of size |Ai| ≤ s, tight for all n and all s ≤ n, L = {0, . . . , s−1}

|A1| ≥ . . . ≥ |Am| and take vi as incidence vectors of Ai
fi(x) =

∏
j:lj<|Ai|(vi · x− lj), where fi : Rn → R polynomials in n variables.

fi(vi) =
∏
lj<|Ai|(|Ai| − lj) 6= 0, fi(vj) =

∏
k,lj<|Ai|(|Ai ∩Aj | − lk)

Claim: |Ai ∩Aj | < |Ai| (Proof: o/w, if Ai ⊂ Aj =⇒ |Ai| < |Aj | =⇒ ⇐= )

Ray-Chandhuri-Wilson Theorem: If additionally uniform |A1| = . . . = |Am| = k, then
m ≤

(
n
s

)
assuming s < n/2, tight ∀n, ∀s < n/2, (all subsets of of size s)

Proof: We know that f̃1, . . . , f̃m linear independence. Q is the space of multilinear polyno-
mials of deg ≤ s− 1, dimQ =

(
n
s−1

)
+
(
n
s−2

)
+ . . .+

(
n
0

)
= #gI ; for I ⊆ [n], |I| ≤ s− 1, gI =∏

i∈I(xi − 1).

HW [for next Tues]: Claim: All the gI and f̃i are linearly independent. ∴ dimQ + m ≤(
n
s

)
+
(
n
s−1

)
+ . . .

(
n
0

)
, i.e. m ≤

(
n
s

)
18



k × n Latin rectangle: k ≤ n, k × n matrix aij ∈ {1, . . . , n}, every row and column has
at most 1 occurrence of each value

Graph: matching is a set of disjoint edges; perfect matching has n/2 edges too

Theorem: Non-empty regular bipartite graph always has a perfect matching.

HW: Use this to prove: any Latin rectangle can be completed to a Latin square

Determinant: Mn(R) → R,Mn(R) = {n × n matrices}, A ∈ Mn(R), A = (aij),det(A) =∑
σ∈Sn

sgn(σ)
∏n
i=1 ai,σ(i)

Permanent: per(A) =
∑

σ

∏n
i=1 aiσ(i) (e.g., per(I) = 1, per(J) = n! [J is the all-ones

matrix], per( 1
nJ) = n!/nn > e−n

Note A→ A′ times λ, then per(A′) = λper(A) and per(λA) = λnper(A)

A is stochastic if every row is a probability distribution, i.e. ∀aij ≥ 0, ∀i,
∑

j aij = 1

A is doubly stochastic if both A and AT are stochastic, i.e. ∀j,
∑

i aij = 1.

DO: If A is stochastic, then per(A) ≤ 1

DO: prove n!/nn > e−n, ∀n [1-line proof, no Stirling’s]

The Permanent Inequality, (Egorychev & Falikman): If A doubly stochastic, then
per(A) ≥ n!/nn (used to be called van der Waerchen’s conjecture) [Proof in van Lint-
Wilson]

10 Thursday, May 5, 2016

HW problem discussed:

S(n, k) =
∑∞

t=0

(
n
kt

) ?
= 1

k

∑k−1
j=0(1 + ζj)n

where ζ = e2πi/k is (the first) kth root of unity (along the unit circle)

= 1
k

∑k−1
j=0

∑n
l=0

(
n
l

)
ζjl = 1

k

∑n
l=0

(
n
l

)∑k−1
j=0 ζ

jl

DO: Powers of ζ l are all kth roots of unity (xk = 1, x ∈ C) ⇐⇒ gcd(k, l) = 1 (relatively
prime)

DO: ζ l is an mth root of unity where m = k/ gcd(k, l).

Note if k|l, then ζ l = 1
The order of z ∈ C is the smallest m ≥ 1 such that zm = 1
∃order ⇐⇒ z is a root of unity

If ord(z) = m, then we say that z is a primitive mth root of unity
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DO: Suppose z is a root of unity. zs = 1 ⇐⇒ ord(z)|s

a|b (i.e., a divides b) if ∃x such that ax = b. Note 0|0.

d is a greatest common divisor (gcd) if a and b if (a) d is a common divisor (i.e., d|a
and d|b) and (b) ∀e, if e|a and e|b (i.e., e is a common divisor), then e|d

DO: ∀x, a|x ⇐⇒ a = ±1

DO: Understand gcd(0, 0) = 0

DO: ∀a, b, if d is a gcd, then d,−d are the only gcds

Note if d is a gcd(a, b) then −d is also a gcd(a, b). Convention: gcd(a, b) denotes the
non-negative gcd

DO: ord(zl) = ord(z) ⇐⇒ gcd(ord(z), l)

DO: ord(zl) = ord(z)/ gcd(l, ord(z))

Suppose ord(z) = k. Then powers of zl are exactly the mth roots of unity, m = k/ gcd(k, l)
zlj , j = 0, . . . , k − 1 =⇒ each mth root of unity occurs k/m times.

DO: If z is a kth root of unity z 6= 1, then
∑k−1

j=0 z
j = 0

Thus, S(n, k) = 1
k

∑
l=0,k|l

(
n
l

)
k,

since
∑k−1

j=0 ζ
jl = 0 unless ζ l = 1 ⇐⇒ k|l.

Then, S(n, 2) =
(
n
0

)
+
(
n
2

)
+ . . . = 2n−1 = 2n/2, if n ≥ 1, while S(0, 2) = 1 = 20 6=

20/2.

If 0n =

{
if n = 0, 1

if n ≥ 1, 0
= (1− 1)n =

(
n
0

)
−
(
n
1

)
+
(
n
2

)
− . . .

HW: |S(n, 3)− 2n/3| < 1. Use formula for S(n, 3).

Sunflower: set system A1, . . . , Am such that K := ∩mi=1Ai. Then the set Ai − K are
disjoint petals, i.e., ∀i 6= j, Ai ∩Aj = K.

HW: Suppose ∀i, |Ai| ≤ r, the Ai are distinct. Suppose m > (s− 1)rr!. Then, ∃sunflower
with s petals.

Matching in a hypergraph H: a set of disjoint edges, ν(H) = max #disjoint edges match-
ing number

If H = (V, E), a cover or “hitting set” of H is a subset W ⊆ V such that ∀E ∈ E ,W ∩E 6=
∅. τ(H) = min size of a hitting set “covering number”
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HW: (a) ν(H) ≤ τ(H) [direct proof, w/o anything fractional], (b) If H is r-uniform, then
τ(H) ≤ rν(H), (c) ∀r ≥ 2,∀ν ≥ 1, show: both (a) and (b) are tight.

Fractional cover: f : V → R, ∀v ∈ V, f(v) ≥ 0;∀E ∈ E ,
∑

v∈E f(v) ≥ 1.

Integer solutions to this system of n+m inequalities gives a cover of size
∑

v∈V f(v) (value
of fractional cover)

τ∗(H) = fractional cover number = min value
f :fractional cover

(f)

DO: τ∗ ≤ τ

Fractional matching: g : E → R such that ∀E ∈ Eg(E) ≥ 0 and ∀v ∈ V
∑

E,v∈E g(E) ≥
1. value(g) =

∑
E∈E g(E), ν∗(H) = max value

g:fractional matching
(g)

HW: ν∗ ≤ τ∗

Corollary: ν ≤ ν∗ ≤ τ∗ ≤ τ

HW: Find ν, τ, ν∗, τ∗ for all finite project planes (in terms of the order). [Do not use the
result below.]

Theorem: ν∗ = τ∗ by the Linear Programming Duality Theorem

DO: Cn, n-cycles: τ(Cn) = dn/2e. ν(Cn) = bn/2c. τ∗ ≤ n/2, ν∗ ≥ n/2 (assign 1/2 as
weight for each of the n points). So, n/2 ≤ ν∗ ≤ τ∗ ≤ n/2.

11 Tuesday, May 10, 2016

∀hypergraph H = (V, E), αχ ≥ n.

Pf: every color class is independent
If H is a vertex-transitive hypergraph (∀v1, v2 ∈ V,∃π ∈ Aut(H) such that π(v1) = v2,
then αχ ≤ n(1 + lnn).

DO: χ is the min #independent sets of which the union is V

Pf: Let A be an independent set of size α, C(v) := min{i | v ∈ Ci}
G = Aut(H). Pick π1, . . . , πs ∈ G uniformly, independently at random

DO: If P(∪si=1πi(A) 6= V ) < 1, then χ ≤ s. [Need to show the inequality for as small an n
as we can do.]

DO: Fix a vertex v. P(v /∈ π1(A)) = 1 − α/n. This is where we use vertex-transitivity.
also, this proof does not depend on the vertex.
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P(v /∈ π2(A)) =same
P(v /∈ π1(A) ∪ . . . ∪ πs(A)) = (1− α/n)s

P((v /∈ π1(A)) ∩ . . . ∩ (v /∈ πs(A))) =
∏

P(vπi(A))
b/c the indicator variables of the events are functions of the independent random variables πi.

Cor (so far): if n(1− α/n) < 1, then chi ≤ s.

P(∃v /∈ ∪si=1πi(A)) = P(∪v∈V (v /∈ ∪si−1πi(A))) ≤
∑

v∈V P(v ∈ ∪ . . .) = n(1− α/n)s

DO: ∀x 6= 0, 1 + x < ex, it suffices ne−αs/n ≤ 1, n ≤ eαs/n.

Then, 1− α/n < e−α/n, so (1− α/n)s < e−αs/n =⇒ lnn ≤ αs/n =⇒ s ≥ n lnn/α. So,
s := dn lnn/αe.

Old HW:

ν(H) matching #: max size of matching = max#disjoint edges
τ(H) covering/hitting/transversal #: min size of cover

[cover/hitting/transversal subset S ⊂ V such that ∀E ∈ E , E ∩ S 6= ∅
If H is k-uniform, then τ ≤ kν. T = ∪si=1Ei, T is a cover.

Maximal matching s ≤ ν.
ν ≤ τ ≤ kν, ∀k ≥ 2, ν ≥ 1 (H: ν disjoint edges)
Case ν = 1: find intersecting k-uniform hypergraph with τ = k.

n = 2k − 1, E =
([n]
k

)
set of k-tuples, complete k-uniform hypergraph on 2k − 1 vertices

So far, we have ν ≤ ν∗, τ∗ ≤ τ . Claim: ν∗ ≤ τ∗
Need to show ∀fractional matching g and ∀fractional covering f , val(g) ≤ val(g).
We have S :=

∑
(v,E),v∈E f(v)g(E)

S =
∑

v∈V
∑

E,v∈E f(v)g(E) =
∑

v∈V f(v)
∑

E,v∈E g(E) ≤
∑

v∈V f(v) = val(f)

while S =
∑

E∈E
∑

v∈E f(v)g(E) =
∑

E∈E g(E)
∑

v∈E f(v) ≥
∑

E∈E g(E) = val(g)
Thus, val(g) ≤ S ≤ val(f). (QED)

DO: If H is k-uniform, then ν ≤ n/k.

DO: T/F? If H is k-uniform, then ν∗ ≤ n/k.

DO: If H is k-uniform and regular, then ν∗ = τ∗ = n/k. [Do not use the Duality Theo-
rem.]

DO: If H is k-uniform, then τ ≤ dn lnm/ke

DO: Use this to prove αχ ≤ · · · for vertex-transitive hypergraphs.

A Sperner family is a set system A1, . . . , Am such that no two are comparable (∀i 6=
j, Ai 6⊆ Aj).

Sperner’s Theorem: m ≤
(

n
bn/2c

)
. (All k-subsets: m =

(
n
k

)
, k = bn/2c or dn/2e.)
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Lemma: If A1, . . . , Am ⊆ [n], Sperner family then
∑m

i=1 1/
(
n
|Ai|
)
≤ 1

DO: (a) Use this to prove theorem. (b) Find Sperner families for which equality holds in
the Lemma.

CH: Find all such families.

12 Thursday, May 12, 2016

BLYM Inequality: A1, . . . , Am ⊆ [n], Sperner =⇒
∑m

i=1 1/
(

1
|∆i|
)
≤ 1. Equality occurs

when complete k-uniform, ∀k.

Q: Are there any other cases?

Note, if A1, . . . , Am are all the subsets and ∀i 6= j, Ai 6⊆ Aj , then
∑

A⊆[n] 1/
(
n
|A|
)

= n +
1

Then, Sperner’s Thoerem (if Sperner family, then m ≤
(

n
bn/2c

)
, equality if complete k-

uniform with k = bn/2c or dn/2e. [Pf from BYLM: m ≤
∑m

i=1

(
n
bn/2c

)
/
(
n
|Ai|
)
≤
(

n
bn/2c

)
,

noting
(

n
bn/2c

)
/
(
n
|Ai|
)
≥ 1.]

DO+: These are the only cases of equality.

Recall Lubell’s Permutation Method. σ ordering of [n], A ⊆ [n] [EKR was proved with
cyclic permutation method by Katona.] (A, σ) are compatible if A is a prefix under σ
(i.e., sequence of adjacent elements in the given ordering)

σ: random linear ordering, |Ω| = n!, A1, . . . , Am Sperner family, N(σ) = #i such that Ai
is compatible with σ.

(1) ∀σ,N(σ) ≤ 1 ⇐= Any two prefixes of a linear order are compatible.
(2) 1 ≥ E(N(σ)) =

∑
E(Xi) =

∑
P(A is compatible with σ) =

∑
1/
(
n
|Ai|
)

N(σ) =
∑m

i=1Xi, Xi indicator of “Ai is compatible with σ”
P(Ai compatible with σ) = |Ai|!(n− |Ai|)!/n! = 1/

(
n
|Ai|
)

[over choice of σ]

HW [next Thurs]: (baby Littlewood-Offord) Given a1, . . . , an, b ∈ R, ai 6= 0, take I ⊆ [n]
at random, and note we have |Ω| = 2n. Prove ∃c such that P(

∑
i∈I ai = b) ≤ c/

√
n, and

estimate c.

13 Tuesday, May 17, 2016

Midterm problem 1:
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k-uniform hypergraph H = (V, E), n = |V |,m = |E|.
Prove: τ(H) ≤ dnk lnme min cover (hitting set).

Pick sequence x1, . . . , xs ∈ V at random independently (with replacement).
P(xi ∈ E) = k/n,
P(xi /∈ E) = 1− k/n,
P(∀i, xi /∈ E) = P(∩si=1“xi /∈ E′′) = (1− k/n)s

P(∃E : E is bad) = P(∪E∈EE is bad) ≤ m(1− k/n)2

1− k/n < e−k/n.

∴ If me−ks/n ≤ 1 then τ(H) ≤ s,
while me−ks/n ≤ 1 ⇐⇒ lnm− ks/n ≤ 0 ⇐⇒ lnm ≤ ks/n ⇐⇒ s ≥ n

k lnm
∴ If s ≥ n

k lnm, then τ ≤ s.
With s := dnk lnme we have τ ≤ s.

Midterm problem 2:

Def ν∗(H):
g : E → R is a fractional matching if ∀E ∈ E , g(E) ≥ 0 and ∀v ∈ V,

∑
E,v∈E g(E) ≤ 1.

value(g) =
∑

E∈E g(E)
ν∗(H) = ming value(g)

If H is k-uniform then ν∗ ≤ kν.

K(k)
n : complete k-uniform hypergraph

ν = bn/kc, ν∗ = n/k

n/k =
(
n
k

)
/
(
n−1
k−1

)
≤ ν∗ ≤ τ∗ ≤ n/k by uniform weight.

τ ≤ kν
ν∗ ≤ τ∗ ≤ τ ≤ kν (first two parts trivial)

For infinitely many values of k, find H such that ν∗(k − 1)ν
projective plane of order k − 1: n = (k − 1)2 + (k − 1) + 1 = k2 − k + 1
ν = 1. Need ν∗ > k − 1.
ν∗ = τ∗ = n/k = (k2 − k + 1)k = k − 1 + 1/k (uniform weight= 1/k)

“There is a difference between easy and trivial; trivial is straightforward.”

Midterm problem 3:

s ≥ 2t+ 1 Kneser’s graph
K(s, t):

(
s
t

)
vertices {vT | T ⊆ [s], |T | = t}. vT ∼ vS if T ∩ S = ∅

DO: K(5, 2) = Petersen’s, n =
(

5
2

)
= 10, deg =

(
3
2

)
= 3.

Claim: α(K(s, t)) =
(
s−1
t−1

)
Lemma: A set, A ⊆ V (K(s, t)) is independent ⇐⇒ the corresponding labels are
an intersecting hypergraph
the label of a set of vertices form a t-uniform hypergraph
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max independence ⇐⇒ max intersecting form,

α =
(
s−1
t−1

)
EKR

Midterm problem 4:

x1 + . . .+ xk = n, xi ≥ 2, #solutions = N(n, k)
y1 + . . .+ yk = n, yi ≥ 0

L(n, k) =
(
n+k−1
n

)
=
(
n+k−1
k−1

)
(n stars)

Claim: N(n, k) = L(n− 2k, k)
using yi := xi − 2

Midterm problem 5:

Flip n coins, X = #pairs of consecutive heads
E(X),Var(X)

X =
∑n−1

i=1 Yi, where Yi =

{
1 if zi = zi+1 = H

0 if otherwise

E(Yi) = P(zi = zi+1 = H) = 1/4
E(X) = (n− 1)/4

Var(X) =
∑

i

∑
j Cov(Yi, Yj) =

∑n−1
i=1 Var(Yi) + 2

∑n−2
i=1 Cov(Yi, Yi+1)

= 3(n− 1)/16 + 2(n− 2)/16

Midterm problem 6:

S(n, 5) =
∑k

k=0

(
n
5k

)
Claim: ∃c > 0 such that |S(n, 5)− 2n/5| < (2− c)n
Note: (2− c)n/2n = (1− c/2)n → 0 exponentially

S(n, 5) = [(1 + 1)n + (1 + ω)n + (1 + ω2)n + (1 + ω3)n + (1 + ω4)n]/5, ω = e2πi/5

|S(n, 5)− 2n/5| = |
∑4

j=1(1 + ωj)n|/5 ≤ 1
5

∑4
j=1 |(1 + ωj)n| ≤ 4(2−c)n

5 < (2− c)n
since |1 + ωj | < 1 + |ωj | = 2, ∃i > 0,∀j, |1 + ωj | < 2− c (b/c ωj not real for j > 0)

Ramsey’s Theorem baby version: n→ (k, l) if no matter how we color E(Kn) red/blue,
either ∃red Kk or ∃blue Kl (Erdös-Rado arrow notation)

Pf: of 6→ (3, 3)

DO: (Erdös-Szekeres)
(
k+l
k

)
→ (k + 1, l + 1). k = l = 2 =⇒

(
4
2

)
= 6→ (3, 3)

Proceed by induction on k + l
Base cases k = 1 or l = 1
Inductive step:

Assume k, l ≥ 2
Use inductive hypothesis both for (k − 1, l) and for (k, l − 1)

HW: Prove 17→ (3, 3, 3)
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Ramsey: ∀k1, . . . , kj ,∃n such that n→ (k1, . . . , kj)

14 Thursday, May 19, 2016

Oddtown Theorem: A1, . . . , Am ⊆ [n], (i) |Ai| = odd and (ii) |Ai ∩ Aj | = even =⇒
m ≤ n.

Proof: incidence vectors v1, . . . , vm– claim linear independence

DO: (a) If v1, . . . , vm ∈ {0, 1}n and v1, . . . , vm are linearly independent over Fp, then they
are linearly independent over R. (b) Converse false for all p.

incidence matrix M =

−v1−
...

−vm−


MMT = (|Ai ∩Aj |)m×m
Claim MMT has full rank (rk = m) over F2

DO: rk(AB) ≤ rk(A), rk(B) over any field

Corollary: m = rk(MMT ) ≤ rk(M) = n.

Observation with Erdös-Szekeres: 4k >
(

2k
k

)
→ (k + 1, k + 1) =: (k + 1)2. Moreover,

n = 4k → (k + 1)2, and we can asymptotically estimate n→ (1 + 1
2 log2 n)2.

“n → (k + l)”: in any graph G with n vertices either clique number ω(G) ≥ k or
α(G) ≥ l.

Want to find n 6→
(

?
k

)
2
. Can try n 6→

(
n
2

)
2

or n 6→ (
√
n+ 1)2.

[Look up Turán’s Theorem.]

Erdös: n 6→ (2 log2 n)2

(We don’t even know minimum number (Ramsey number) to arrow 5, i.e. ?→ (5)2.)

Proof from Erdös: n 6→ (k)2. Take a random graph p = 1/2 with space |Ω| = 2(n2) (uniform).
A ⊂ [n], |A| = k,

P(A is a clique) = 1/2(n2).

P(A is independent) = 1/2(n2) likewise.

P(A homogeneous) = 2/2(k2) = 21−(k2).

P(∃homogenous subset of size k) <
(
n
k

)
21−(k2) (inequality by union bound)

Corollary: If
(
n
k

)
21−(k2) ≤ 1, then n 6→ (k)2.
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(DO:
(
n
k

)
≤ nk

k! .)

if 2
k!

nk

2(
k
2)
≤ 1 =⇒

2
k!

(
n

2(k−1)/2

)k
≤ 1?

sufficient to get n
2(k−1)/2 ≤ 1

for n 6→ (k)2, it suffices: n
2(k−1)/2 ≤ 1

n ≤ 2(k−1)/2

log2 n ≤ k−1
2

k ≥ 1 + 2 log2 n.

Zsigmond Nagy’s construction: gives n 6→ (c 3
√
n)2

n =
(
s
3

)
, V = {vT | T ⊆ [s], |T | = 3}, T, S ⊆ [s], |T | = |S| = 3. vT ∼ vS adjacent if

|S ∩ T | = 1.

HW: Prove Nagy’s graph, ω(G) ≤ s, α(G) ≤ s. [For each part, use a theorem provided in
class.]

S ∩ T 6= ∅, so
(
s−1

2

)
∼ s2/2 ∼ cn2/3

DO: Find Ω(s2) triples in [s] such that every pair intersects in 0 or 1.

Ramsey’s Theorem: ∀t, s, k1, . . . , ks, ∃n such that n → (k1, . . . , ks)
(t); n → (k)

(t)
s where

t indicates coloring of t-tuples and s = #colors.

Erdös-Rado: n→ (c log logn)
(3)
2

n → (≈ 1
2 log2 n)

(2)
2 (graph case). So we find r ≈ log2 n vertices such that ∃sequence

c1, . . . , cr of colors such that ∀i < j, color(wi, wj) = ci. So, majority of the ci is the same,
say “blue” W = {wi | ci blue} so |W | & 1

2 log2 n. Thus, W is all blue.

21+...+r = w(r+1)r/2 ≈ 2r
2/2 ≈ n, so r2/2 ≈ log2 n, i.e., r ≈

√
2 log2 n. col(wi, wj , wl) only

depends on (i, j). Pick 1
2 log2 r out of these that are homogeneous ∼ 1

4 log2 log2 n.

t = 3 : m 6→ (c1
√

log n)
(3)
2 , but n→ (c2 log logn).

15 Tuesday, May 24, 2016

HW Problem reviewed:

Nagy’s graph Gs: n =
(
s
3

)
#vertices, {vT | T ⊆ [s], |T | = 3}, vT1 ∼ vT2 if |T1 ∩ T2| = 1

Claim: α(Gs) ≤ s and ω(Gs) ≤ s (clique number)
Clique corresponds to triples T1, . . . , Tm such that ∀i 6= j, |Ti ∩ Tj | = 1
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Need To Show: m ≤ s, which we have by Fisher’s Inequality

Independent set corresponds to T1, . . . , Tm such that ∀i 6= j, |Ti ∩ Tj | =

{
0

2

Need To Show: m ≤ s, which we have by Oddtown Theorem

Recall the Ray-Chaudhuri – Wilson Inequality: If A1, . . . , Am uniform, L = {l1, . . . , ls},
Ai ⊆ [n], ∀i 6= j|Ai ∩Aj | ∈ L, then m ≤

(
n
s

)
Also, recall from Frankl-Wilson (1980): If p prime, A1, . . . , Am ⊆ [n], ∀i|Ai| = k, L =
{l1, . . . , ls}, k /∈ L mod p, and ∀i 6= j, |Ai ∩ Aj | ∈ L mod p ( : ∀ik 6≡ li mod p), then
m ≤

(
n
s

)
(“modular R-W theorem”)

Nagy: explicitly, n 6→ (c 3
√
n)2

Explicit Ramsey numbers: ∀ε > 0, n 6→ (nε), i.e. n 6→ (no(1)) with little-o notation.

Consider a FW graph, p prime. Then n =
(2p2−1
p2−1

)
subsets of [2p2 − 1] of size p2 − 1:

{vT | T ⊆ [2p2 − 1], |T | = p2 − 1}, vT1 ∼ vT2 if |T1 ∩ T2| ≡ −1 mod p

Clique: T1, . . . , Tm such that ∀i ≤ j, |Ti ∩ Tj | ≡ −1 mod p

Claim: m ≤
(

2p2−1
p−1

)
(by R-W)

|Ti ∩ Tj | ∈ {p− 1, 2p− 1, . . . , p2 − p− 1} (p− 1 elements, here)
Independence Number: |Ti ∩ Tj | 6≡ −1 mod p, |Ti| ≡ p2 − 1 ≡ −1 mod p,

L = {0, 1, . . . , p− 2} =⇒ α = m ≤
(

2p2−1
p−1

)
Note

(2p2−1
p2−1

)
∼ c · 22p2−1/

√
2p2 − 1 ∼ c′ · 22p2/p, while

(
2p2−1
p

)
< (2p2 − 1)p = 2p log2(2p2−1)

p log2(2p2 − 1) ∼ p log2(p2) = 2p log2 p, and log(22p2) = 2p2

=⇒ log(22p2)/ log[(2p2 − 1)p] ∼ p/ log p

=⇒
(

2p2−1
p

)
.
(2p2−1
p2−1

)
, i.e. nlog p/p . n (consider log p/p = ε here)

Projective plane P = (P,L, I), I ⊆ P × L (i.e. p · l). Polarity is a bijection f : P → L
such that p1 · f(p2) iff p2 · f(p1)

DO: each Galois plane has a polarity (p : [α1, α2, α3], l : [β1, β2, β3], p · l if
∑
αiβi =

0)

“Fixed point” of a polarity f : p · f(p); [α1, α2, α3] is a fixed point of “standard” polarity
if
∑
α2
i = 0. So Fq if q prime: q|α2

1 + α2
2 + α2

3.

Baer’s Theorem: Every polarity has a fixed point, ∀ finite projective plane

For a contradiction, suppose f has no fixed point.
Consider an incidence matrix M = (mij); we list the lines in a given order,
and list the points in the corresponding order from li := f(pi)

If f is a polarity, then M = MT (symmetric matrix)
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If f is fixed-point-free, then ∀i,mii = 0 (diagonal is all zero)
If M is an incidence matrix of a projective plane, then

MTM =


n+ 1 1 · · · 1

1 n+ 1 · · · 1
...

...
. . .

...
1 1 · · · n+ 1

 = J + nI

row sum = (n+ 1) +N − 1 = n2 + 2n+ 1 = (n+ 1)2

all others: for i ≥ 2, Jei = 0 so M2ei = λ2
i ei, so λ2

2 = . . . = λ2
N = n (λi = ±

√
n),

so now M2 = J + nI
Spectral Theorem: M has an orthonormal eigenbasis e1, . . . , eN :

Mei = λiei,Me1 = (n+ 1)e1, ei ⊥ ej , and e1 =

1
...
1


So, trace(M) =

∑
imii = 0 =

∑
i λi = (n+ 1)2 +

√
n± . . .

√
n (n2 + n terms of form ±

√
n)

Thus, 0 = (n+ 1) +K
√
n =⇒ 0 mod n ≡ −K

√
n = (n+ 1) =⇒ K2n ≡ (n+ 1)2 = 1 mod n

16 Thursday, May 26, 2016

Quiz 3 Problem 1:

x1 + . . .+ xk = n count solutions in positive odd integers
yi := (xi − 1)/2 integer ≥ 0, so

∑
yi = (n− k)/2, yi ≥ 0 (bijection b/w sets of solutions)

Case 1: n− k odd =⇒ #solutions = 0

Case 2: n− k even =⇒
(n−k

2
+k−1

k−1

)
=
(n+k

2
−1

k−1

)
Quiz 3 Problem 2:

α(G) ≤ 1 + 2 log2 n for almost all grpahs G with n vertices
pn = P(for random graph G with n vertices, this holds)
limn→∞ pn = 1

In class: 1− pn = P(∃ independent set of size > 1 + 2 log2 n) ≤ 1/k!, k : 1 + 2 log2 n

Quiz 3 Bonus:

Prove: ∀k∃n from any n points in the plane, no 3 on a line, ∃k : convex k-gon

DO: k points span a convex k-gon ⇐⇒ every 4 of them span a convex 4-gon (quadrilat-
eral)

Color quadruples of points: red if convex, blue if concave.

n→ (k, 5)
(4)
2 ; 5-points all-blue impossible; therefore k-point all-red set exists.
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Comment: this gives astronomically large bound, n = 222
k

“Friendship graph:” every pair of points has exactly 1 common neighbor

Example: “bouquet of triangles:” a set of triangles that share one point and are disjoint
otherwise.

Theorem (Erdős, Rényi, Vera Sós): Bouquets of triangles are the only Friendship
graphs.

Pf: N(v): set of neighbors of v
∀v, w, |N(v) ∩N(w)| = 1
∀x, y∃!v such that x, y ∈ N(v)
∴ {N(v) | v ∈ V } is a possibly degenerate projective plane

Case 1: degenerate. Then there is a vertex adjacent to all the others.
Exercise: this must be a bouquet of triangles

Case 2: Projective plane. Claim: cannot happen
v ↔ N(v); polarity: x ∈ N(y) ⇐⇒ y ∈ N(x) because
in Friendship graph, x ∈ N(y) ⇐⇒ x ∼ y (adjacent) ⇐⇒ y ∈ N(v)

Baer’s Theorem: Every polarity of a finite projective plane has a fixed point: v ∈
N(v).

But this is impossible in our case because it would mean v ∼ v. So this case cannot arise
from a Friendship graph.

Linear Programming Problem:

x =

x1

...
xn

, y =

y1

...
yn

, (Notation: x ≤ y if ∀i, xi ≤ yi)). Concise notation for a system of k

linear equations in n unknowns: Ax = b, A = (aij)k×n, x ∈ Rn, b ∈ Rk.

Here, we instead have constraints Ax ≤ b, x ≥ 0 with the objective max ← cT · x =∑n
i=1 cixi (c ∈ Rn) (Primal Linear Program). We call a set of constraints feasible if

∃ solution. The Dual Linear Program has constraints AT y ≥ c, y ≥ 0 and objective

min← bT · y =
∑k

j=1 bjyj .

Proposition (mini-theorem): ∀x, y, if x satisfies the Primal Linear Program and y satisfies

the Dual Linear Program, then cTx ≤ bT y

∴ max(primal) ≤ min(dual)

Proof: c ≤ AT y ⇐⇒ cT ≤ ytA
cT · x ≤ yTAx ≤ yT b
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The two sides of this inequality are in fact equal.

Duality Theorem of Linear Programming: If both the primal and the dual are
feasible, then max(primal) = min(dual)

DO!!: Infer ν∗ = τ∗ from LP duality.

Lovász: (a) τ∗ ≤ τ ≤ τ∗(1+ln degmax), where degmax is the max degree in the hypergraph
(“integrality gap”). (b) Greedy algorithm finds such a cover

Permanent Inequality: A ∈ Mn(R),per(A) =
∑

σ∈Sn

∏n
i=1 ai,σ(i); stochastic matrix

A = (ai,j) ∈ Mn(R), ai,j ≥ 0,∀i
∑

j ai,j = 1; doubly stochastic A has AT also stochastic,
i.e., columns each sum to 1.

Exercise: If A stochastic, then per(A) ≤ 1.

Pf: 1 =
∏n
i=1(

∑n
j=1 aij) =

∑
(nn terms ) ≥

∑
(n! terms ) = per(A)

Note J : all ones has 1
nJ doubly stochastic and per( 1

nJ) = n!/nn, while per(I) = 1 and I
is doubly stochastic matrix.

DO: Assume A is stochastic. Prove: per(A) = 1 ⇐⇒ A is a permutation matrix

Permanent Inequality: If A is doubly stochastic, then per(A) ≥ n!/nn

Recall n!/nn > e−n. (First, note ex =
∑∞

k=0 x
k/k! > xk/k!, so en > nn/n! ⇐⇒ n!/nn >

e−n.) We can use this to find the asymptotic log of the number of Latin squares of order
n, L(n) := #{n× n Latin squares}.

Theorem: lnL(n) ∼ n2 lnn

i.e., L(n) < nn
2
. Need to find lower bound on L(n).

#perfect matchings in a bipartite graph (n, n): per(A) for the incidence matrix A
r-regular: 1

rA doubly stochastic, so 1
rn per(A) = per(1

rA) > e−n =⇒ per(A) > ( re)n

L(n) >
∏n−1
r=1 ( re)n > [(n−1)!]n

en2

lnL(n) > n ln[(n− 1)!]− n2 ∼ n2 lnn

31


