Honors Combinatorics CMSC-27410/Math-28400/CMSC-37200 Second Quiz. April 26, 2016 Instructor: László Babai

Name (print):	Major/ Year
provided. You may conti	not use book, notes, or scrap paper. Write your answers in the space nue on the reverse. This quiz contributes 5% to your course grade. problems are underrated; solve them only after you solved the ordinary
	expected to solve the bonus problems unless you seek graduate credit for
1. (6+8 points) Consid	er the sequence $a_n = \binom{2n}{n}$.
(a) Determine the	largest value r such that $a_n x^n \to 0$ for all x with $0 \le x < r$.
	orm expression of the generating function $f(x) = \sum_{n=0}^{\infty} a_n x^n$. (Hint. The part (a) is the convergence radius of $f(x)$.)
Reason your answer	s.
many of these $\binom{2n}{n}$ v	nkard has $\binom{2n}{n}$ ways of walking $2n$ steps, starting and endig at zero. How walks will ever reach point k (k is a positive integer)? Your answer should seed-form expression. Give a very simple proof of your answer; name the

principle used.

3. (6 points) For all $k, \ell \ge 1$ find a sequence of $k\ell$ numbers such that the sequence contains no increasing subsequence of length k+1 and no non-increasing subsequence of length $\ell+1$.

4. (3+4+6+5 points) We roll n dice; the numbers shown are X_1, \ldots, X_n ($1 \le X_i \le 6$).

(a) What is the size of the sample space for this experiment? — Let S be the sum and P the product of the X_i . Determine (b) E(S) (c) Var(S) (d) E(P). Your answer to each question should be a very simple formula. Give a brief reason for your answers, no detailed proofs required.

5. (BONUS 4 points) A homogeneous third-order recurrence is a recurrence of the form $b_n = \alpha b_{n-1} + \beta b_{n-2} + \gamma b_{n-3}$ for some constants α, β, γ . Find a homogeneous third-order recurrence satisfied by the sequence $b_n = n^2$.

6. (BONUS 12 points) Let p(n) denote the integer partition number (number of solutions to the equation $n = \sum_{i=1}^{n} i k_i$ in nonnegative integers k_i). Outline the proof that $\ln p(n) < \pi \sqrt{2n/3}$. Points are awarded depending on specificity and accuracy of the details.