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3.1 Fundamental Theorem of Arithmetic
(unique prime factorization)

Definition 3.1 (Prime number). p is a prime number if p ≥ 2 and

(∀x)(x | p =⇒ x ∈ {±1,±p})

DO 3.2. Prove by induction on n ≥ 1 that n has a prime factorization:

(∃ primes p1, . . . , pk)(n = p1 · · · pk)

(Note that this works for n = 1 as well: we set k = 0 and 1 =
∏

i∈∅ pi, since the product of
the empty set is defined to be 1)

The Fundamental Theorem of Arithmetic states that for every n ≥ 1, a prime
factorization of n exists and is unique up to the order of the primes involved. The existence
is an easy exercise (above); the essence of the theorem is uniqueness. We state the unqieness
formally.

Theorem 3.3 (Uniqueness of prime factorization). If p1 · · · pk = q1 · · · q` where the pi and
qj are prime numbers then k = ` and there is a permutation σ of the set {1, . . . , k} (i.e., a
bijection {1, . . . , k} → {1, . . . , k}) such that (∀i)(qi = pσ(i)).

We now describe the key tool to proving the Uniqueness theorem.

Definition 3.4 (Prime Property). z ∈ Z has the prime property if z 6= ±1 and

(∀a, b)(z | ab =⇒ (z | a) ∨ (z | b))

Example 3.5. Show that 6 does not have the prime property.
We want to show that (∃a, b)(6 | ab∧ (6 - a)∧ (6 - b)) Let a = 4, b = 3. Then 6 | 4 · 3 but

6 - 4 and 6 - 3.

DO 3.6. Prove: If z is composite (i.e. (∃u, v)(u, v ≥ 2)∧ z = uv), then z does not have the
prime property.

DO 3.7. Prove: 0 has the prime property.

Next we state the main technical result of today’s class.

Theorem 3.8 (Prime property theorem). All prime numbers have the prime property.
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The proof of this result will be the focus of today’s lecture.

DO 3.9. Derive the Uniqueness of prime factorization theorem (Theorem 3.3) from the
Prime property theorem (Theorem 3.8).

The proof of the Prime property theorem will follow from the existence and basic prop-
erties of the gcd. We shall give two proofs of the existence of gcd.

3.2 Existence of gcd via cyclicity of subgroups of Z
Our first proof will not only establish the existence of gcd(a, b) but also that it can be
represented in the form ax + by, i.e., as a linear combination of a and b. The latter part is
often referred to as “Bézout’s lemma.”

Theorem 3.10 (Existence of the GCD and Bézout’s lemma).

(∀a, b)(∃ gcd(a, b) =: d ∧ (∃x, y)(d = ax+ by))

Our tool for proving this result is the fact that all subgroups of Z are cyclic, as stated in
2A.8HW. Recall the definition.

Definition 3.11. A non-empty subset H ⊆ Z is a subgroup of Z if 0 ∈ H and H is closed
under subtraction (H −H ⊆ H). We denote this circumstance by writing H ≤ Z.

Definition 3.12. A cyclic subgroup is a subgroup of the form aZ (all multiples of a). The
number a is called a generator of this subgroup.

Theorem 3.13 (All subgroups cyclic). All subgroups of Z are cyclic.

DO 3.14. Derive Theorem 3.10 from the “All subgroups cyclic” theorem (Theorem 3.13.

Hint. First prove that the set of linear combinations, aZ + bZ = {ax + by | x, y ∈ Z}, is a
subgroup. Let d be a generator of this subgroup. Now prove that d satisfies the definition
of a greatest common divisor of a and b.

We now discuss the proof of the “All subgroups cyclic” theorem.

Proof. From the easy part of the homework we know that:

a ∈ H =⇒ −a ∈ H
0 ∈ H

a, b ∈ H =⇒ a+ b ∈ H
a ∈ H =⇒ (∀n ∈ Z)(na ∈ H)

a ∈ H =⇒ aZ ⊆ H

Case 1: H = {0}. Then H = 0Z.
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Case 2: H 6= {0}
There exists a positive number in H. We shall call the smallest such number d. This is our
suspect for a generator of H.
Claim. H = dZ.
We already know that dZ ⊆ H. We need to show the opposite inclusion, i.e., that
(h ∈ H) =⇒ (h ∈ dZ).

Let h ∈ H. By the Division Theorem (Problem 2A.2), (∃q, r)(h = dq + r ∧ 0 ≤ r < d).
We know that d ∈ H implies dZ ⊆ H, and thus dq ∈ H. But then, r = h−dq ∈ H−H ⊆ H,
so r ∈ H. Now r cannot be positive since d was minimal, and therefore r = 0, so we proved
that d | h, i.e., h ∈ dZ. This completes the proof of the Claim and thereby the proof of the
“all subgroups cyclic” theorem (Theorem 3.13).

We are now just a few steps away from proving Theorem 3.10.

Lemma 3.15. A linear combination that is a common divisor is necessarily a greatest com-
mon divisor. In other words, if f = ax + by and f | a, f | b, then f is a greatest common
divisor of a and b.

Proof. Suppose that e | a ∧ e | b. Then e | ax and e | by, so e | ax+ by = f .

Lemma 3.16.
gcd(ad, bc) = |c| gcd(a, b)

Proof. Need to show that A = gcd(ad, bc) divides B = |c| gcd(a, b) and vice versa.
First we show that B | A. This is immediate from the definition of gcd.

d | a =⇒ dc | ac
d | b =⇒ dc | bc

Therefore, B = dc | gcd(ac, bc) = A

The converse, A | B, is far from evident; it will require Bézout’s lemma: gcd(a, b) =
ax + by for some x, y. Now B = |c|(ax + by) = ±(acx + bcy). Now A | ac and A | bc;
therefore A | acx+ bcy = ±B | B.

Finally, we are ready to prove that prime numbers have the prime property (Theorem 3.8).

Proof. Suppose that p is a prime number and that p | ab and p - b. We then want to show
that p | a.

Given p | ab and p | ap, by the definition of gcd, p | gcd(ab, ap) = |a| ˙gcd(b, p) by
Lemma 3.16.

Since p is prime and does not divide b, |a| ˙gcd(b, p) = |a|, so p | a.
This completes the proof of the Prime property theorem, and thereby the Uniqueness of

prime factorization and with it the Fundamental Theorem of Arithmetic.
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3.3 Existence of gcd: Euclid’s algorithm

We now give the second (historically first) proof of the the existence of gcd .

Euclid’s proof. Let Div(a) denote the set of divisors of a. For instance, Div(10) = {±1,±2,±5,±10.

DO 3.17. Div(a) = Div(−a)

Let Div(a, b) denote the set of common divisors of a, b, i.e., Div(a, b) = Div(a) ∩Div(b)

DO 3.18. Euclid’s Lemma: Div(a, b) = Div(a− b, b)

DO 3.19. Div(a, b) = Div(a+ b, a)

DO 3.20. Div(a, b) = Div(b, a)

DO 3.21. Div(a, b) = Div(a− qb, a) for all q

DO 3.22. Div(a, 0) = Div(a).

Hint. Div(0) = Z.

DO 3.23. d is a greatest common divisor of a, b exactly if Div(a, b) = Div(d)

Euclid’s proof is algorithmic, it goes via “Euclid’s algorithm.” We already know that
gcd(a, 0) = |a| gcd(±a,±b) = gcd(|a|, |b|) assuming the right hand side exists, so it suffices to
show that every pair of positive integers has a gdc. We describe the algorithm in pseudocode.

Euclid’s algorithm
Input: integers a ≥ b > 0
Output: gcd(a, b)
Auxiliary variables (updated in every round): integers A > B ≥ 0
Loop invariant: throughout the algorithm we shall maintain Div(A,B) = Div(a, b)

1. initialize: A← a, B ← b

2. while B > 0
3. let A = Bq + r where 0 ≤ r < B (Division Theorem)
4. let A← B and B ← r
5. end(while)
6. return A

DO 3.24. Use Euclid’s algorithm to find gcd(897, 644). Do not use electronic devices.

DO 3.25. Prove that the algorithm terminates in a finite number of steps.

Hint. Show that the value of B goes down in every round.

DO 3.26. Verify the Loop invariant.

Hint. Euclid’s lemma.

DO 3.27. Prove that the value d returned satisfies Div(d) = Div(a, b).
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Hint. At the time of exit from the “while” loop we have B = 0 and therefore Div(A,B) =
Div(A). But d is the value of A at this point.

DO 3.28. Prove that the value d returned is gcd(a, b).

Hint. Exercise 3.23.

This completes the justification of Euclid’s Algorithm and thereby Euclid’s proof of the
existence of gcd.

DO 3.29. Use Euclid’s proof to prove that the gcd is a linear combination.

3.4 Multiplicative inverse

Definition 3.30. x is a multiplicative inverse of a mod m if ax ≡ 1 mod m

Theorem 3.31. a has a multiplicative inverse mod m if and only if a and m are relatively
prime, i.e., gcd(a,m) = 1.

DO 3.32. If d | m and a ≡ b (mod m) then a ≡ b (mod d).

Proof of Theorem 3.31. First, let us show that, assuming gcd(a,m) = 1 mod m, a mul-
tiplicative inverse exists. This follows from Bézout’s Lemma: 1 = ax + my, so 1 ≡ ax
(mod m).

Assume now that a multiplicative inverse exists. We must show that gcd(a,m) = 1
(mod m). This is easier: it follows from the definition of gcd. Indeed, let d = gcd(a,m).
Then d | m, so by exercise 3.32, we have ax ≡ 1 (mod d). But d | a, i.e., a ≡ 0 (mod d), so
ax ≡ 1 (mod d) translates to 0 ≡ 1 (mod d) and therefore d | 1.

Example 3.33. We demonstrate how to find the multiplicative inverse of 6 modulo 17.

6x ≡ 1 (mod 17)

17x ≡ 0 (mod 17)

12x ≡ 2 (mod 17)

5x ≡ −2 (mod 17)

x ≡ 3 (mod 17)

The third line is twice the first line. The fourth line is the second minus the third. The
fifth line is the first minus the fourth. What this procedure proves is that the only possible
inverses of 6 modulo 17 are the numbers ≡ 3 (mod 17). The fact that these actually work
follows from Theorem 3.31 since 6 and 17 are relatively prime.

Note that we essentially performed Euclid’s algorithm on the coefficients on the left-hand
side.

The multiplicative inverse is not unique.
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DO 3.34. Prove that the multiplicative inverse is unique modulo m. This means the follow-
ing. Assume x is a multiplicative inverse of a modulo m. Then a number y is a multiplicative
inverse of a modulo m if and only if y ≡ x (mod m).

So we can talk about multiplicative inverses among residue classes. Notation for the
previous example:

[6−1]17 = [3]17.
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