Discrete Math 37110 - Class 4 (2016-10-06)

Instructor: László Babai Notes taken by Jacob Burroughs Revised by instructor

4.1 Division vs. congruences

DO 4.1. If $m \mid ab \text{ and } \gcd(a, m) = 1$, then $m \mid b$

DO 4.2. If gcd(a, m) = 1, then gcd(m, ab) = gcd(m, b)

DO 4.3. If $d \mid m$ and $a \equiv b \pmod{m}$ then $a \equiv b \pmod{d}$. (Uses transitivity of divisibility)

Example 4.4. If $a \equiv b \pmod{75}$ then $a \equiv b \pmod{5}$

DO 4.5.
$$a \equiv b \pmod{m} \implies ac \equiv bc \pmod{mc}$$

The converse of this also holds.

DO 4.6. If
$$c \mid a, b, m$$
 and $a \equiv b \pmod{m}$, then $\frac{a}{c} \equiv \frac{b}{c} \pmod{\frac{m}{c}}$, assuming $c \neq 0$.

We have seen that $a \equiv b \pmod{m} \implies ac \equiv bc \pmod{m}$. The converse of this statement is false. For example, $2 \equiv 4 \mod 2$, but, dividing both sides with 2 we do not get a congruence: $1 \not\equiv 2 \mod 2$. However, the converse does hold under an additional assumption.

DO 4.7. Suppose
$$c \mid a, c \mid b, a \equiv b \pmod{m}$$
, and c, m are relatively prime. Then $\frac{a}{c} \equiv \frac{b}{c} \pmod{m}$.

Here is a stronger version of this statement.

DO 4.8. Suppose
$$c \mid a, c \mid b, c \neq 0$$
 and $a \equiv b \pmod{m}$. Then $\frac{a}{c} \equiv \frac{b}{c} \pmod{\frac{m}{d}}$ where $d = \gcd(c, m)$

4.2 Linear congruences

Definition 4.9. x is a multiplicative inverse of a mod m if $ax \equiv 1 \pmod{m}$

Proposition 4.10. If there exists an inverse of a (mod m) then the inverses form a residue class mod m. In other words, if x_0 is an inverse then $(\forall x)(x \text{ is an inverse} \iff x \equiv x_0 \pmod{m})$.

Corollary 4.11. The multiplicative inverse is unique modm. This means that any two inverses must be congruent $\mod m$.

Proof of Prop. 4.10.

$$ax \equiv 1 \pmod{m} \iff ax \equiv ax_0 \pmod{m}$$

 $\iff m \mid ax - ax_0 = a(x - x_0)$
 $\iff m \mid x - x_0 \pmod{m}$
 $\iff x \equiv x_0 \mod m$

Proposition 4.12 (Linear congruence). Given a, b, m, a solution to $ax \equiv b \pmod{m}$ exists if and only if $gcd(a, m) \mid b$.

Proof of necessity. Let
$$d = \gcd(a, m)$$
. Then $ax \equiv b \pmod{m} \Longrightarrow ax \equiv b \pmod{d}$, and thus $0 \equiv b \pmod{d}$ since $a \equiv 0 \pmod{d}$. So $d \mid b$.

DO 4.13. The sufficiency is left as an exercise. We assume $d \mid b$, and want to show that $\exists x$ such that $ax \equiv b \pmod{m}$.

Hint. Prove that this statement is equivalent to Bézout's lemma.

HW 4.14. Show that if $ax \equiv b \pmod{m}$ is solvable then the solutions form a residue class modulo $\frac{m}{d}$. What this means is the following. Suppose $ax_0 \equiv b \pmod{m}$. Then $(\forall x)(ax \equiv b \pmod{m}) \iff \left(x \equiv x_0 \pmod{\frac{m}{d}}\right)$, where $d = \gcd(a, m)$.

Remark. It follows that the solution is unique modulo m/d, i.e., every pair of solutions is congruent modulo m/d.

Method 4.15. We want to solve $ax \equiv b \pmod{m}$, assuming $d \mid b$ where $d = \gcd(a, m) \neq 0$. We can transform this into $\frac{a}{d}x \equiv \frac{b}{d} \mod \frac{m}{d}$, in which case the coefficient and the modulus are relatively prime $(\gcd(a', m') = 1$, where a' = a/d and m' = m/d). Let b' = b/d. Then $x = (a')^{-1}b' \pmod{m'}$ works; or we can directly use a method analogous to finding the multiplicative inverse.

4.3 Systems of simultaneous congruences

Definition 4.16. A system of simultaneous congruences is a set of congruences which must be satisfied simultaneously.

DO 4.17. Consider the following system of simultaneous congruences.

$$a_1 x \equiv b_1 \pmod{m_1}$$

 $a_2 x \equiv b_2 \pmod{m_2}$
 \vdots
 $a_k x \equiv b_k \pmod{m_k}$

Prove: If each separate congruence is solvable and $(\forall i)(m_i \neq 0)$ then the system is equivalent to a system of the following form:

$$x \equiv b'_1 \pmod{m'_1}$$

$$x \equiv b'_2 \pmod{m'_2}$$

$$\vdots$$

$$x \equiv b'_k \pmod{m'_k}$$

where $m'_i = m_i / \gcd(a_i, m_i)$. Determine the value of b'_i . (Two systems are equivalent if they have the same set of solutions.)

So we only need to deal with the case when each coefficient is 1.

Theorem 4.18. Consider the following system of simultaneous congruences.

$$x \equiv c_1 \pmod{m_1}$$

 $x \equiv c_2 \pmod{m_2}$
 \vdots
 $x \equiv c_k \pmod{m_k}$

If this system has a solution then the solution is unique modulo $lcm(m_1, m_2, ..., m_k)$.

Proof. Suppose x_0 is a solution. Then x is a solution if and only if $(\forall i)(x \equiv x_0 \pmod{m_i})$, or equivalently, $x \equiv x_0 \pmod{\lim_i m_1, \dots, m_k}$

DO 4.19. Show that $e_1 \mid a$ and ... and $e_k \mid a$ if and only if $lcm(e_1, \ldots, e_k) \mid a$

Example 4.20. A system with no solution:

$$x \equiv 0 \pmod{2}$$
$$x \equiv 1 \pmod{2}$$

DO 4.21. Show that the system

$$x \equiv 4 \pmod{75}$$
$$x \equiv 17 \pmod{210}$$

has no solution.

Hint: look at each congruence modulo 5.

Theorem 4.22. The system

$$x \equiv a_1 \pmod{m_1}$$
$$x \equiv a_2 \pmod{m_2}$$

is solvable if and only if $a_1 \equiv a_2 \pmod{d}$ where $d = \gcd(m_1, m_2)$.

Proof of necessity. $x \equiv a_i \pmod{m_i} \implies x \equiv a_i \pmod{d} \implies a_1 \equiv x \equiv a_2 \pmod{d}$

XC 4.23. Show that the condition is also sufficent: if $a_1 \equiv a_2 \pmod{d}$ then the system of congruences given in Theorem 4.22 has a solution.

Theorem 4.24 (Chinese Remainder Theorem (CRT)). If $(\forall i \neq j)(\gcd(m_i, m_j) = 1)$, then

$$x \equiv c_1 \pmod{m_1}$$

 \vdots
 $x \equiv c_k \pmod{m_k}$

has a solution.

DO 4.25. Prove that under the assumptions of the CRT, the solutions form a residue class modulo $m_1 ldots m_k$. In particular, the solution is unique modulo $m_1 ldots m_k$.

DO 4.26. Let
$$M = m_1 \cdots m_k$$
, and $P_i = \frac{M}{m_i} = \prod_{j \neq i} m_j$. Show that $(\forall j)(\gcd(P_j, m_j) = 1)$.

Proof of CRT. Try to find x in the form $x = \sum_{i=1}^k x_i P_i$. Now x is a solution if and only if $\sum_{i=1}^k x_i P_i \equiv c_j \pmod{m_j}$ for each j. Let us note that $P_i \equiv 0 \pmod{m_j}$ if $i \neq j$. The above sum thus reduces to $x_j P_j \equiv c_j \pmod{m_j}$ (separation of the variables). So to solve our original system of simultaneous congruences, we just need to solve each congruence $x_j P_j \equiv c_j \pmod{m_j}$ separately. But this congruence is solvable because $\gcd(P_j, m_j) = 1$.

CH 4.27. The system $x \equiv a_i \pmod{m_i}$ (i = 1, ..., k) is solvable if and only if every pair of congruences is solvable, i.e., $(\forall i \neq j)(a_i \equiv a_j \mod \gcd(m_i, m_j))$.

Note that there may be questions that ask us to use the CRT to solve them; don't use this instead.

4.4 GCD of a set of integers

Definition 4.28 (Greatest common divisior of a set of numbers). Let $S \subseteq \mathbb{Z}$. We say that d is a gcd of S if d is a common divisor (i.e., $(\forall s \in S)(d \mid s)$) and d is a multiple of all common divisors (i.e., $(\forall e)$ (if $(\forall s \in S)(e \mid s)$ then $e \mid d$))

Note that in this definition, S is permitted to be an infinite set, or the empty set.

DO 4.29. Find a, b, c such that gcd(a, b, c) = 1 but $gcd(a, b) \neq 1$ and $gcd(a, c) \neq 1$ and $gcd(b, c) \neq 1$.

DO 4.30. Show that the gcd exists and "Bézout's Lemma" holds: the gcd can be written in the form

$$\gcd = \sum_{s_i \in S} x_i s_i$$

Here the sum must be finite even if S is infinite; in other words, all but a finite number of the coefficients x_i must be zero.

DO 4.31. (a) What is $gcd(\emptyset)$? (b) What is $gcd(\mathbb{Z})$?

DO 4.32. Prove: lcm(a, b) is the gcd of all common multiples of a and b. (Note: this is an infinite set.)

DO 4.33. Using the notation from the proof of CRT above, prove that $gcd(P_1, \ldots, P_k) = 1$.

DO 4.34 (No-risk strategy). In the proof of CRT, we were looking for solutions of a particular form, namely, linear combinations of the P_i . Prove that there was no risk to this approach: every integer can be written as a linear combination of the P_i .

4.5 Reducing composite moduli to prime power moduli

DO 4.35. Prove: $a \equiv b \pmod{600} \iff$ the following congruences hold simultaneously.

$$a \equiv b \pmod{8}$$

 $a \equiv b \pmod{3}$
 $a \equiv b \pmod{25}$

DO 4.36. Let $m = \prod p_i^{k_i}$ be the prime factorization of m (the p_i are distinct primes). Then $a \equiv b \pmod{m} \iff (\forall i)(a \equiv b \pmod{p_i^{k_i}}).$

Example 4.37. Consider the quadratic congruence

$$ax^2 + bx + c \equiv 0 \pmod{600}.$$

This is equivalent to the following set of simultaneous congruences.

$$ax^{2} + bx + c \equiv 0 \pmod{8}$$
$$ax^{2} + bx + c \equiv 0 \pmod{3}$$
$$ax^{2} + bx + c \equiv 0 \pmod{25}$$

If we have a way of handling such congruences modulo 8, 3, and 2 (and modulo prime powers in general) then the solutions can then be combined using the CRT to obtain the solutions modulo 600.

HW 4.38. Given a prime p, prove that

$$x^2 \equiv 1 \pmod{p} \iff x \equiv \pm 1 \pmod{p}$$

Clearly state, exactly what property of p you are using.

XC 4.39. Given a pair of distinct odd primes, $p \neq q$, prove that

$$x^2 \equiv 1 \pmod{pq} \implies x \equiv \pm 1 \pmod{pq}$$

Warning: you have to show that this inference is false for every pair (p,q) of distinct odd primes. Giving a counterexample for a particular pair such as (3,5) will not do.

Note: This problem was previously erroneously posted as "HW." It was meant to be "XC."

4.6 An amusing exercise: decimal is special!

The instructor's mother, a grade school teacher, tried to teach her slow-witted son the multiplication table. I had especially great difficulty remembering $7 \cdot 8$. Mother noticed the following helpful mnemonic.

$$56 = 7 \cdot 8$$
.

Are there other entries in the multiplication table that obey a similar rule? Sure,

$$12 = 3 \cdot 4$$
.

AMUX 4.40 (Instructor's mother's rule). Show that the instructor's mother's rule occurs in the decimal system only. In other words, consider four consecutive digits, $k, \ldots, k+3$, in base b. So $0 \le k \le b-4$. Now if (k+2)(k+3) is the two-digit number $\overline{k(k+1)}_b$, i.e., (k+2)(k+3) = bk + (k+1), then b=10 and k=1 or 5.

(Enjoy this exercise, do not hand it in.)