
Discrete Math 37110 - Class 4 (2016-10-06)

Instructor: László Babai
Notes taken by Jacob Burroughs

Revised by instructor

4.1 Division vs. congruences

DO 4.1. If m | ab and gcd(a,m) = 1, then m | b

DO 4.2. If gcd(a,m) = 1, then gcd(m, ab) = gcd(m, b)

DO 4.3. If d | m and a ≡ b (mod m) then a ≡ b (mod d). (Uses transitivity of divisibility)

Example 4.4. If a ≡ b (mod 75) then a ≡ b (mod 5)

DO 4.5. a ≡ b (mod m) =⇒ ac ≡ bc (mod mc)

The converse of this also holds.

DO 4.6. If c | a, b,m and a ≡ b (mod m), then
a

c
≡ b

c
(mod

m

c
), assuming c 6= 0.

We have seen that a ≡ b (mod m) =⇒ ac ≡ bc (mod m). The converse of this
statement is false. For example, 2 ≡ 4 mod 2, but, dividing both sides with 2 we do not
get a congruence: 1 6≡ 2 mod 2. However, the converse does hold under an additional
assumption.

DO 4.7. Suppose c | a, c | b, a ≡ b (mod m), and c,m are relatively prime. Then
a

c
≡ b

c
(mod m).

Here is a stronger version of this statement.

DO 4.8. Suppose c | a, c | b, c 6= 0 and a ≡ b (mod m). Then
a

c
≡ b

c
(mod

m

d
) where

d = gcd(c,m)

4.2 Linear congruences

Definition 4.9. x is a multiplicative inverse of a mod m if ax ≡ 1 (mod m)

Proposition 4.10. If there exists an inverse of a (mod m) then the inverses form a residue
class modm. In other words, if x0 is an inverse then (∀x)(x is an inverse ⇐⇒ x ≡ x0

(mod m)).

Corollary 4.11. The multiplicative inverse is unique modm. This means that any two
inverses must be congruent mod m.
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Proof of Prop. 4.10.

ax ≡ 1 (mod m) ⇐⇒ ax ≡ ax0 (mod m)

⇐⇒ m | ax− ax0 = a(x− x0)

⇐⇒ m | x− x0 (because gcd(a,m) = 1)

⇐⇒ x ≡ x0 mod m

Proposition 4.12 (Linear congruence). Given a, b,m, a solution to ax ≡ b (mod m) exists
if and only if gcd(a,m) | b.

Proof of necessity. Let d = gcd(a,m). Then ax ≡ b (mod m) =⇒
ax ≡ b (mod d), and thus 0 ≡ b (mod d) since a ≡ 0 (mod d). So d | b.

DO 4.13. The sufficiency is left as an exercise. We assume d | b, and want to show that ∃x
such that ax ≡ b (mod m).
Hint. Prove that this statement is equivalent to Bézout’s lemma.

HW 4.14. Show that if ax ≡ b (mod m) is solvable then the solutions form a residue

class modulo
m

d
. What this means is the following. Suppose ax0 ≡ b (mod m). Then

(∀x)(ax ≡ b (mod m)) ⇐⇒
(
x ≡ x0 (mod

m

d
)
)

, where d = gcd(a,m).

Remark. It follows that the solution is unique modulo m/d, i.e., every pair of solutions is
congruent modulo m/d.

Method 4.15. We want to solve ax ≡ b (mod m), assuming d | b where d = gcd(a,m) 6= 0.
We can transform this into a

d
x ≡ b

d
mod m

d
, in which case the coefficient and the modulus

are relatively prime (gcd(a′,m′) = 1, where a′ = a/d and m′ = m/d). Let b′ = b/d. Then
x = (a′)−1b′ (mod m′) works; or we can directly use a method analogous to finding the
multiplicative inverse.

4.3 Systems of simultaneous congruences

Definition 4.16. A system of simultaneous congruences is a set of congruences which must
be satisfied simultaneously.

DO 4.17. Consider the following system of simultaneous congruences.

a1x ≡ b1 (mod m1)

a2x ≡ b2 (mod m2)

...

akx ≡ bk (mod mk)
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Prove: If each separate congruence is solvable and (∀i)(mi 6= 0) then the system is equivalent
to a system of the following form:

x ≡ b′1 (mod m′1)

x ≡ b′2 (mod m′2)

...

x ≡ b′k (mod m′k)

where m′i = mi/ gcd(ai,mi). Determine the value of b′i. (Two systems are equivalent if they
have the same set of solutions.)

So we only need to deal with the case when each coefficient is 1.

Theorem 4.18. Consider the following system of simultaneous congruences.

x ≡ c1 (mod m1)

x ≡ c2 (mod m2)

...

x ≡ ck (mod mk)

If this system has a solution then the solution is unique modulo lcm(m1,m2, . . . ,mk).

Proof. Suppose x0 is a solution. Then x is a solution if and only if (∀i)(x ≡ x0 (mod mi)),
or equivalently, x ≡ x0 mod lcm(m1,m2, . . . ,mk)

DO 4.19. Show that e1 | a and . . . and ek | a if and only if lcm(e1, . . . , ek) | a

Example 4.20. A system with no solution:

x ≡ 0 (mod 2)

x ≡ 1 (mod 2)

DO 4.21. Show that the system

x ≡ 4 (mod 75)

x ≡ 17 (mod 210)

has no solution.
Hint: look at each congruence modulo 5.

Theorem 4.22. The system

x ≡ a1 (mod m1)

x ≡ a2 (mod m2)

is solvable if and only if a1 ≡ a2 (mod d) where d = gcd(m1,m2).
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Proof of necessity. x ≡ ai (mod mi) =⇒ x ≡ ai (mod d) =⇒ a1 ≡ x ≡ a2 (mod d)

XC 4.23. Show that the condition is also sufficent: if a1 ≡ a2 (mod d) then the system of
congruences given in Theorem 4.22 has a solution.

Theorem 4.24 (Chinese Remainder Theorem (CRT)). If (∀i 6= j)(gcd(mi,mj) = 1), then

x ≡ c1 (mod m1)

...

x ≡ ck (mod mk)

has a solution.

DO 4.25. Prove that under the assumptions of the CRT, the solutions form a residue class
modulo m1 . . .mk. In particular, the solution is unique modulo m1 . . .mk.

DO 4.26. Let M = m1 · · ·mk, and Pi = M
mi

=
∏

j 6=i mj.
Show that (∀j)(gcd(Pj,mj) = 1).

Proof of CRT. Try to find x in the form x =
∑k

i=1 xiPi. Now x is a solution if and only

if
∑k

i=1 xiPi ≡ cj (mod mj) for each j. Let us note that Pi ≡ 0 (mod mj) if i 6= j. The
above sum thus reduces to xjPj ≡ cj (mod mj) (separation of the variables). So to solve our
original system of simultaneous congruences, we just need to solve each congruence xjPj ≡ cj
(mod mj) separately. But this congruence is solvable because gcd(Pj,mj) = 1.

CH 4.27. The system x ≡ ai (mod mi) (i = 1, . . . , k) is solvable if and only if every pair of
congruences is solvable, i. e., (∀i 6= j)(ai ≡ aj mod gcd(mi,mj)) .

Note that there may be questions that ask us to use the CRT to solve them; don’t use
this instead.

4.4 GCD of a set of integers

Definition 4.28 (Greatest common divisior of a set of numbers). Let S ⊆ Z. We say that d
is a gcd of S if d is a common divisor (i.e., (∀s ∈ S)(d | s)) and d is a multiple of all common
divisors (i.e., (∀e)(if (∀s ∈ S)(e | s) then e | d))

Note that in this definition, S is permitted to be an infinite set, or the empty set.

DO 4.29. Find a, b, c such that gcd(a, b, c) = 1 but gcd(a, b) 6= 1 and gcd(a, c) 6= 1 and
gcd(b, c) 6= 1.

DO 4.30. Show that the gcd exists and “Bézout’s Lemma” holds: the gcd can be written
in the form

gcd =
∑
si∈S

xisi

Here the sum must be finite even if S is infinite; in other words, all but a finite number of
the coefficients xi must be zero.
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DO 4.31. (a) What is gcd(∅) ? (b) What is gcd(Z) ?

DO 4.32. Prove: lcm(a, b) is the gcd of all common multiples of a and b. (Note: this is an
infinite set.)

DO 4.33. Using the notation from the proof of CRT above, prove that gcd(P1, . . . , Pk) = 1.

DO 4.34 (No-risk strategy). In the proof of CRT, we were looking for solutions of a par-
ticular form, namely, linear combinations of the Pi. Prove that there was no risk to this
approach: every integer can be written as a linear combination of the Pi.

4.5 Reducing composite moduli to prime power moduli

DO 4.35. Prove: a ≡ b (mod 600) ⇐⇒ the following congruences hold simultaneously.

a ≡ b (mod 8)

a ≡ b (mod 3)

a ≡ b (mod 25)

DO 4.36. Let m =
∏

pkii be the prime factorization of m (the pi are distinct primes). Then
a ≡ b (mod m) ⇐⇒ (∀i)(a ≡ b (mod pkii ).

Example 4.37. Consider the quadratic congruence

ax2 + bx + c ≡ 0 (mod 600).

This is equivalent to the following set of simultaneous congruences.

ax2 + bx + c ≡ 0 (mod 8)

ax2 + bx + c ≡ 0 (mod 3)

ax2 + bx + c ≡ 0 (mod 25)

If we have a way of handling such congruences modulo 8, 3, and 2 (and modulo prime powers
in general) then the solutions can then be combined using the CRT to obtain the solutions
modulo 600.

HW 4.38. Given a prime p, prove that

x2 ≡ 1 (mod p) ⇐⇒ x ≡ ±1 (mod p)

Clearly state, exactly what property of p you are using.

XC 4.39. Given a pair of distinct odd primes, p 6= q, prove that

x2 ≡ 1 (mod pq) 6=⇒ x ≡ ±1 (mod pq)

Warning: you have to show that this inference is false for every pair (p, q) of distinct odd
primes. Giving a counterexample for a particular pair such as (3, 5) will not do.

Note: This problem was previously erroneously posted as “HW.” It was meant to be “XC.”

5



4.6 An amusing exercise: decimal is special!

The instructor’s mother, a grade school teacher, tried to teach her slow-witted son the
multiplication table. I had especially great difficulty remembering 7 · 8. Mother noticed the
following helpful mnemonic.

56 = 7 · 8.

Are there other entries in the multiplication table that obey a similar rule? Sure,

12 = 3 · 4.

AMUX 4.40 (Instructor’s mother’s rule). Show that the instructor’s mother’s rule occurs
in the decimal system only. In other words, consider four consecutive digits, k, . . . , k + 3,
in base b. So 0 ≤ k ≤ b − 4. Now if (k + 2)(k + 3) is the two-digit number k (k + 1)b, i.e.,
(k + 2)(k + 3) = bk + (k + 1), then b = 10 and k = 1 or 5.

(Enjoy this exercise, do not hand it in.)
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