
Discrete Math 37110 - Class 5 (2016-10-11)

Instructor: László Babai
Notes taken by Jacob Burroughs

Revised by instructor

5.1 Fermat’s little Theorem

Theorem 5.1 (Fermat’s little Theorem). If p is prime and gcd(a, p) = 1, then ap−1 ≡ 1
mod p.

Equivalently, if p is prime then (∀a)(ap ≡ a mod p)

DO 5.2. Prove that the two versions of FlT are indeed equivalent.

Example 5.3. We can show this simply for p = 2, 3, 5, noting that the product of k consec-
utive integers is always divisible by k.

a2 ≡ a (mod 2) 2 | a2 − a = a(a− 1)

a3 ≡ a (mod 3) 2 | a3 − a = (a− 1)a(a+ 1)

a5 ≡ a (mod 5) 5 | a5 − a = (a− 1)a(a+ 1)(a2 + 1)

≡ (a− 1)a(a+ 1)(a2 − 4)

= (a− 1)a(a+ 1)(a+ 2)(a− 2)

HW 5.4. Prove: if a = 3k − 4 and b = 5k + 3 then gcd(a, b) = 1 or 29. (7 points)

Your proof sould take no more than two lines.

5.2 Infinitude of primes; primes in arithmetic progressions

Theorem 5.5 (Euclid: “Elements”). There are infinitely many primes.

Proof. Let us prove this by contradictions. Suppose P =
∏m

i=1 pi where p1, . . . , pm are all
the primes. Let q be a prime divisor of P + 1, so q | P + 1. Since q is a prime, (∃j)(q = pj).
Therefore q | P , but we also have q | P + 1, so q | 1, a contradiction.

XC 5.6. Prove: there exist infinitely many primes p ≡ −1 (mod 4) (6 points)

XC 5.7. If p is prime and p | 4a2 + 1 then p ≡ 1 (mod 4). (Hint: Fermat’s Little Theorem)
(5 points)

XC 5.8. Use the preceding exercise to prove that there exist infinitely many primes p ≡ 1
(mod 4). (5 points)
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Theorem 5.9 (Dirichlet).

(∀a, b ≥ 1)(if gcd(a, b) = 1 then ∃ infinitely many primes p ≡ b (mod a))

The proof uses the theory of complex functions.

DO 5.10. If p is prime, p ≥ 5, then p ≡ ±1 (mod 6)

DO 5.11. There exist infinitely many primes p ≡ −1 (mod 6)

CH 5.12. There exist infinitely many primes p ≡ 1 (mod 6)

5.3 Asymptotic equality; the Prime Number Theorem: Stirling’s
formula

Definition 5.13. We say f ∼ g if limx→∞
f(x)
g(x)

= 1. For sequences {an} and {bn} we say
an ∼ bn if limn→∞

an
bn

= 1.

Notation 5.14. Let π(x) denote the number of primes ≤ x.

Example 5.15.

π(10) = 4

π(100) = 25

π(2) = 1

π(π) = 2

π(−15) = 0

Theorem 5.16 (Prime Number Theorem, Hadamard and de la Vallée Poussin, 1896).

π(x) ∼ x

lnx

Probability that a random number from 1 to x is prime: π(x)
x
∼ 1

lnx
. We note that this

goes to zero fairly slowly, so primes are relatively frequent.
Hilarious reading (not relevant to the course) by George Mikes: “How to be Alien.”

Theorem 5.17 (Stirling’s Formula).

n! ∼
(n
e

)n√
2πn

We denote the set{1, . . . , n} by [n]. Now n! is the number of permutations of [n]

Definition 5.18. A permutation of a set A is a bijection A→ A
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5.4 Counting

Notation 5.19. Σn denotes the set of strings of length n over the finite alphabet Σ.

Example 5.20. Example: let Σ = {A,B,C}; then ABBCA ∈ Σ5 and |{A,B,C}n| = 3n.

Definition 5.21. The set P(A) is the powerset of A: the set of all subsets of A.

Definition 5.22. Given B ⊂ A, the indicator function of B in A: fB : A → {0, 1} is
defined as follows: fB(x) = 1 if x ∈ B and fB(x) = 0 if x ∈ A \ B. (This function indicates
membership in B. It is also be called the characteristic function of B.)

Notation 5.23. Given A,B sets:

AB = {f : B → A functions}

DO 5.24.
∣∣AB∣∣ = |A||B|.

Hint.
∣∣AB∣∣ counts the strings of length |B| over the alphabet A.

DO 5.25. The function B 7→ fB is a bijection from P(A) to {0, 1}A. This proves that
|P(A)| = 2|A|.

HW 5.26 (Due Tuesday, 2016-10-18). Count the (0, 1) strings of length n without consecu-
tive 1s. Express this in closed form (no summation or product) through a sequence we have
already encountered. Prove your answer. (7 points)

Notation 5.27. We denote the number of k-subsets of an n-set by the symbol
(
n
k

)
(“n choose k”).

Theorem 5.28. (a) For 0 ≤ k ≤ n we have
(
n
k

)
= n!

k!(n−k)! . (b) If k > n then
(
n
k

)
= 0.

Statement (b) is obvious. We prove a generalization of statement (a).

Theorem 5.29 (Permutations with repeated entries). Let X be a string of n letters over the
alphabet Σ = {A1, . . . , Am}. Let ki denote the multiplicity of of Ai (number of occurrences of

Ai) in X. (So ki ≥ 0 and
∑m

i=1 ki = n.) Then the number of permutations of X is
n!∏
(ki!)

.

Proof. For notational convenience we describe the proof for the case m = 3 and alphabet
Σ = {A,B,C}. The general case works the same way. Let us label the occurrences of A as
A1, . . . , Ak1 , the occurrences of B as B1, . . . , Bk2 , etc. Now all letters are distinct, so there
are n! permutations. Let us now drop the labels; let us say that two labeled strings are
equivalent if their unlabeled versions are equal. So for instance, A2A3B2A1B1 is equivalent
to A1A3B1A2B2 since when we unlabel them, both will become the string AABAB. This is
an equivalence relation of labeled strings; what we need to count is the equivalence classes.
Each equivalence class consists of

∏
ki! permutations, so the number of equivalence classes

is
n!∏
(ki!)

.
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Remark 5.30. The instructor calls the method used “King Matthias’s shepherd’s method.”
(The shepherd counted his sheep by counting their legs and dividing by 4, noting that there
was a natural equivalence relation on legs (“belongs to the same sheep”) and each equivalence
class has size 4.)

DO 5.31. Derive part (a) of Theorem 5.28 from Theorem 5.29. Hint: Use the alphabet
Σ = {0, 1} (so m = 2) and encode each k-subset by its indicator function viewed as a string
of k 1s and n− k 0s.

Theorem 5.32 (Binomial Theorem).

(x+ y)n =
n∑
k=0

(
n

k

)
xkyn−k

Proof. (x1 + y1)(x2 + y2) · · · (xn + yn) =
∑

I⊆[n]
∏

i∈I xi
∏

j 6∈I yi
After dropping subscripts, we get

∑n
k=0

(
n
k

)
xkyn−k

Theorem 5.33 (Trinomial Theorem).

(x+ y + z)n =
∑

k1,k2,k3≥0,k1+k2+k3=n

(
n

k1, k2, k3

)
xk1yk1zk1

where

(
n

k1, k2, k3

)
=

n!

k1!k2!k3!

DO 5.34. Multinomial theorem:

(x1 + · · ·+ xr)
n =

∑
ki≥0,

∑
ki=n

(
n

k1, . . . , kr

)
xk11 · · ·xkrr

where

(
n

k1, . . . , kr

)
=

n!∏
ki!

.

DO 5.35. (
n

k

)
=
n(n− 1) · · · (n− k + 1)

k!
.

DO 5.36. (
n

3

)
∼ n3

6
.

HW 5.37. Express

(
2n

n

)
asymptotically as

(
2n

n

)
∼ anbcn. Find the constants a, b, c.

(6 points)

DO 5.38. Find constants a and b such that
√
n2 + 1− n ∼ anb
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The number of terms in the binomial theorem is n+1. The number of terms in the trino-

mial theorem is

(
n+ 2

2

)
. The number of terms in the multinomial theorem is

(
n+ r − 1

r − 1

)
.

DO 5.39. Prove the last statement above.

Hint. We need to count the solutions of the equation k1+ · · ·+kr = n in nonnegative integers
ki. Use the “stars and bars” method. (Look it up.)
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