
Discrete Math 37110 - Class 6 (2016-10-13)

Instructor: László Babai
Notes taken by Jacob Burroughs

Revised by instructor

6.1 Asymptotic notation

Please review the instructor’s online “Discrete Mathematics” lecture notes (LN) for asymp-
totic notation. Here are the definitions.

Notation 6.1. 1. an ∼ bn (read: an is asymptotically equal to bn) if limn→∞
an
bn

= 1.
(Note: this requires that bn be almost never zero, i.e., bn = 0 happens only for a
finite number of values of n.)

2. “Little-oh” notation: an = o(bn) (read: “an is little-oh of bn”) if limn→∞
an
bn

= 0.

Example 6.2.
5n6 +

√
n

20n4 + 1
∼ n2

4

Proof. Let us denote the left-hand side by an, so an = 5n6+
√
n

20n4+1
. Notice that the left-hand

side can be written as an = n2cn where

cn =
5 +

√
n

n6

20 + 1
n4

.

The numerator of this expression approaches 5, the denominator appraches 20, so limn→∞ cn =
5/20 = 1/4. So an

n2 → 1
4

and therefore 4an
n2 → 1. In other words, an

n2/4
→ 1, which means

an ∼ n2/4.

Remark 6.3. The notation cn → 1/4 has the same meaning as limn→∞ cn = 1/4. But you
cannot write an → n2/4 because limn→∞ an =∞, or, in other notation, an →∞.

You can write cn ∼ 1/4 where the right-hand side is interpreted as the constant sequence
1/4, 1/4, 1/4, . . . , whereas when writing cn → 1/4, the “1/4” refers to a number, not a
sequence.

Remark 6.4. While we write 7n5 = o(n6), we say “7n5 is o(n6).” We do not say “equal”
for this equality sign; in fact, it is not symmetric; read it from left to right.

Notation 6.5 (big-Oh). We say that an = O(bn) (read: “an is big-Oh of bn”) if
(∃C)(∃N)(∀n)(n ≥ N =⇒ |an| ≤ C |bn|). In other words, (∃C) such that the inequality
|an| ≤ C |bn|) holds for all sufficiently large n.

Remark 6.6. If an = O(bn), we say that the rate of growth of an is less than or equal to
the rate of growth of bn. C is referred to as the implied constant.
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Example 6.7. 1000n6 + 100n2 = O(n6). The implied constant is any C > 1000 (e.g.,
C = 1001).

Notation 6.8 (big-Omega). We say that an = Ω(bn) (read: “an is big-Omega of bn”) if
bn = O(an).

Remark 6.9. Once again, note that = is not an equality. We read it as “is.” O and Ω are
reflexive and transitive relations on the set of sequences, but it is not a symmetric relation.

DO 6.10. Show that ∼ is an equivalence relation on the set of almost-never-zero sequences
(sequences that have only a finite number of terms equal to zero).

DO 6.11. Show o is reflexive and transitive on the set of almost-never-zero sequences.

Notation 6.12 (big-Theta). We say that an = Θ(bn) (read: “an is big-Theta of bn”) if
an = O(bn) and an = Ω(bn). If this is the case, we say that an and bn have the same rate
of growth.

DO 6.13. Prove: an = Θ(bn) if and only if there exist positive constants C1, C2 such that
C1|bn| ≤ |an| ≤ C2|bn| holds for all sufficiently large n.

DO 6.14. Prove: if an ∼ bn then an = Θ(bn).

DO 6.15. Show that Θ is an equivalence relation on sequences.

DO 6.16. Assume an = O(bn) and an = O(cn). (a) Prove: the relation an = O(bn +cn) does
not follow from these assumptions. (b) Prove: an = O(bn + cn) doesfollow if an, bn ≥ 0.

DO 6.17. If an = O(cn) and bn = O(cn) then an + bn = O(cn).

Example 6.18. The notation an = o(1) means precisely that an → 0.
The notation bn = O(1) means precisely that bn is bounded, i.e., (∃C) such that |bn| ≤ C

holds for all sufficiently large n.

Definition 6.19. If cn = Ω(1), we say that cn is bounded away from 0, meaning that
(∃c > 0) such that |cn| > c for all sufficiently large n,

Remark 6.20 (Origin of the asymptotic notation). The ∼, little-oh and big-Oh notation
(“Landau notation”) originates from number theory around 1900. Donald Knuth introduced
Θ, Ω, and ω for computer science in the early 1970s. (an = ω(bn) means bn = o(an); we shall
not use this notation.)

Remark 6.21. Asymptotic relations like an ∼ n2/4 or an = O(n2) are insensitive to chang-
ing a finite number of terms in the sequence an; we even permit a finite number of terms
to be undefined. In particular, such relations reveal nothing about a particular term in the
sequence, such as a1000.
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6.2 Graph Theory

DO 6.22. Study graph terminology from the instructor’s online “Discrete Mathematics”
lecture notes (LN).

Definition 6.23. Graphs have nodes, called “vertices,” and links, called “edges.” The
singular of the word “vertices” is vertex. There are no such words as “vertice” or “vertexes”
or “verticies.”

The example in class had 6 vertices and 7 edges. We write G = (V,E) to denote a graph
with vertex set V and edge set E. The egdes are unordered pairs of distinct vertices. The
example in class was the graph (V,E) with V = [6] and
E = {{1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 6}, {6, 1}, {6, 2}}.

Notation 6.24. If A is a set, then
(
A
k

)
denotes the set of k-subsets of A.

Remark 6.25. With this notation, E ⊆
(
V
2

)
.

Definition 6.26 (Adjacency). Two vertices v, w ∈ V are adjacent in G (notation: v ∼G w)
if {v, w} ∈ E. In this case we also say that v and w are neighbors. We also simply write
v ∼ w if the graph G is clear from the context. The adjacency relation is an irreflexive
and symmetric relation on the set V .

In this class, most of the time we use the notation n = |V | and m = |E|, so our graphs
will have n vertices and m edges, unless expressly stated otherwise.

DO 6.27. 0 ≤ m ≤
(
n
2

)
.

DO 6.28. (a) The number of graphs on a given set V of n vertices is 2(n
2).

(b) The number of graphs on a given set V of n vertices that have m edges is((n
2

)
m

)
.

Definition 6.29. The complete graph (clique) Kn has all pairs adjacent (and thus it
has m =

(
n
2

)
edges). So a graph (V,E) is complete exactly if E =

(
V
2

)
.

Definition 6.30 (Subgraph). We say that G = (V,E) is a subgraph of H = (W,F )
(notation: H ⊆ G) if W ⊆ V and F ⊆ E.

Notation 6.31 (Cycles, paths). We denote the cycle of length n by Cn (n ≥ 3). (See LN
for the definition.) Cn has n vertices and n edges.

We denote the path of length n− 1 by Pn (n ≥ 1). Pn has n vertices and n− 1 edges.

Definition 6.32 (Induced subgraph). Given the graph G = (V,E) and W ⊆ V , the sub-
graph of G induced on the subset W is the graph G[W ] = (W,E ∩

(
W
2

)
).

DO 6.33. The number of induced subgraphs of G is 2n.

3

http://people.cs.uchicago.edu/~laci/06dm/lecturenotes.pdf
http://people.cs.uchicago.edu/~laci/06dm/lecturenotes.pdf


Hint. You only need to specify the vertices, not the edges of an induced subgraph.

Definition 6.34 (Spanning subgraph). Given the graph G = (V,E) and F ⊆ E, we call the
graph H = (V, F ) a spanning subgraph of G.

DO 6.35. The number of spanning subgraphs of G is 2m.

Hint. You only need to specify the edges, not the vertices of a spanning subgraph.

Definition 6.36 (Complement). The complement of a graph G = (V,E) is G = (V,E)
where E =

(
V
2

)
\ E. So for any v 6= w ∈ V we have v ∼G w ⇐⇒ v 6∼G w.

Definition 6.37 (Isomorphism). Given graphs G = (V,E) and H = (W,F ), a function
f : V → W is a G → H isomorphism if f is a bijection that preserves adjacency, i.e.,
(∀u, v ∈ V )(u ∼G v ⇐⇒ f(u) ∼H f(v)).

Definition 6.38 (Isomorphic graphs). We say that the graphs G and H are isomorphic
(notation: G ∼= H) if there exists a G→ H isomorphism.

DO 6.39. Isomorphism is an equivalence relation on graphs.

Definition 6.40 (Degree). The degree deg(v) of the vertex v is the number its neighbors.

Definition 6.41 (r-regular graph). G is regular of degree r if every vertex has degree r. We
also say that such a graph is r-regular.

Definition 6.42 (Bipartite graphs). A graph is bipartite if V can be partitioned into two
parts, V = V1∪̇V2, such that edges only go between the two parts. (Vertices within each are
not adjacent.)

DO 6.43. Prove: G is bipartite if and only if its vertices can be colored by two colors,
say red and blue, such that no two vertices of the same color are adjacent (neighbors have
different color).

DO 6.44. Show that Cn is bipartite if and only if 2 | n.

DO 6.45 (Characterization of bipartite graphs). Show that G is bipartite if and only if G
does not contain any odd cycles.

Definition 6.46 (Forest). G is a forest if G contains no cycles.

Definition 6.47. w is accessible from v if there exists a path from v to w.

DO 6.48. Show that accessibility is an equivalence relation on V .

Definition 6.49 (Connected components). The equivalence classes of the accessibility rela-
tion are called connected components.

Definition 6.50 (Connected graph). G is connected if it has just one connected component,
i.e., every vertex is acessible from every vertex.
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Definition 6.51 (Tree). A tree is a connected forest, i.e., it is a connected graph with no
cycles.

HW 6.52. Draw all non-isomorphic trees on 7 vertices (by hand). State how many you
found. Do it in some systematic way (explain your system). Avoid either of the following
types of mistakes: draw two graphs that are isomorphic; miss a graph; draw a graph that
is not a tree or has the wrong number of vertices. (11 points minus 3 points per
mistake)

Definition 6.53. G is self-complementary if G ∼= G.

HW 6.54. (a) Find a self-complementary graph on 4 vertices and one on 5 vertices. Name
them (their names appear in these notes); you do not need to draw.
(b) Prove: If G is self-complementary then n ≡ 0 (mod 4) or n ≡ 1 (mod 4). (2+5
points)

HW 6.55. Prove: If G is bipartite then m ≤ n2/4. (6 points)

XC 6.56. Prove: If G has no triangles then m ≤ n2/4. (8 points)
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