
Discrete Math 37110 - Class 7 (2016-10-18)

Instructor: László Babai
Notes taken by Jacob Burroughs

Revised by instructor

7.1 Automorphisms, Platonic solids as graphs

Definition 7.1. Iso(G,H) is the set of all isomorphisms from G to H.
An automorphism of G is a G→ G isomorphism.
Aut(G) = Iso(G,G) is the set (in fact, group) of automorphisms.

DO 7.2. Show that |Aut(Cn)| = 2n

DO 7.3. Prove: |Aut(G)| = n! ⇐⇒ G = Kn or G = Kn.

Definition 7.4 (Complete bipartite graph). We define Kr,s as a graph with r + s vertices
divided into a group of r vertices and a group of s vertices, and each vertex in one group is
adjacent to each vertex in the other group.

Fact 7.5. |V (Kr,s)| = r + s and |E(Kr,s)| = r · s.
Aut(Kr,s) = r!s! if r 6= s, and |Aut(Kr,s)| = 2(r!)2 if r = s.

DO 7.6. Study the five Platonic solids: tetrahedron, octahedron, cube, dodecahedron, icosa-
hedron.

We can view polyhedra such as the Platonic solids as graphs (they have vertices and
edges).

The vertices and edges of the tetrahedron form the graph K4, with 4! = 24 automor-
phisms.

DO 7.7. Prove: The cube (as a graph) has 8 · 6 = 48 automorphisms.

DO 7.8. Prove: The octahedron has 48 automorphisms.

Hint. The octahedron is a 4-regular graph with 6 vertices. Its complement is a 1-regular
graph (i.e., a “perfect matching”) consisting of 3 disjoint edges, so it has 3! · 23 = 48 auto-
morphisms.

DO 7.9. Prove that the automorphism group of the cube and the automorphism group of
the octahedron are isomorphic.

Hint. The octahedron and the cube are dual graphs. (We shall learn more about dual graphs
when we study planar graphs.)

The dodecahedron has 12 faces, 30 edges, 20 vertices.
The icosahedron has 12 vertices, 30edges, 20 faces.
They are dual to each other.
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DO 7.10. The dodecahedron has 120 automorphisms.

(Therefore the icosahedron also has 120 automorphisms.)

CH 7.11. Show that Aut(cube) ∼= S4 × C2.

CH 7.12. Show that Aut(dodecahedron) 6∼= S5

Definition 7.13. The girth of a graph is the length of its shortest cycle.

Definition 7.14 (Petersen’s graph). Petersen’s graph has 10 vertices, is 3-regular, and has
girth 5.

DO 7.15. Prove that these properties uniquely define a graph. Prove that this graph (i.e.,
Petersen’s graph) can be obtained from the dodecahedron by identifying opposite vertices.

DO 7.16. (a) Show that the dodecahedron is Hamiltonian.
(b) Show: Petersen’s graph is not Hamiltonian. (I don’t know any elegant proof of this fact.)

XC 7.17. Show that |Aut(Petersen’s)| = 120. (6 points)

CH 7.18. Show that Aut(Petersen’s) ∼= S5.

CH 7.19. Show that Aut(dodecahedron) ∼= A5×C2 where A5 denotes the alternating group
of degree 5 (the group of even permutations of 5 elements).

7.2 Trees

Definition 7.20 (Tree). A tree is a connected cycle-free graph.

Theorem 7.21. For a tree, m = n− 1.

Lemma 7.22. If a tree has n ≥ 2 vertices, it has a vertex of degree 1 (a “dangling vertex”).

DO 7.23. Show that the endpoints of a maximal path in a tree with n ≥ 2 vertices are
dangling.

Proof of theorem 7.21. By induction on n. Base case: If n = 1, m = 0.
Assume now n ≥ 2. Inductive Hypothesis: Theorem true for all trees with n′ < n

vertices.
By the Lemma, there exists a vertex x of degree 1. Let T ′ = T \ x (the subgraph iduced

on the vertices other than x).
Claim. T ′ is a tree.
Proof. T ′ is clearly cycle-free. We need to show T ′ is connected.

Let u, v ∈ V (T ′). Then there exists a path P in T from u to v. Clearly, x cannot be an
endpoint of P since x is not in T ′. Moreover, x cannot be an interior point of P because it
would need degree ≥ 2 to be an the interior point of a path. This proves the Claim.

So T ′ is a tree and therefore we can apply the IH to T ′. We have n′ = n − 1, and
m′ = m−1′, and by the IH, m′ = n′−1. So m−1 = (n−1)−1, and therefore m = n−1.
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DO 7.24. For a graph G with n vertices and m edges, the following are equivalent:

(1) G is a tree

(2) G is connected and m = n− 1

(3) G is cycle-free and m = n− 1

(4) (∀u, v ∈ V )(∃!u− · − v path)

(5) G is a maximal cycle-free graph

(6) G is a minimal connected graph

DO 7.25. Every connected graph has a spanning tree

Example 7.26. The number of spanning trees on Kn = trees on a given set of n vertices:
n = 1 : 1

n = 2 : 1
n = 3 : 3
n = 4 : 16 (12 copies of P4 and 4 copies of K1,3)
n = 5 : 125 (5 copies of K1,4, 60 copies of P5, and 60 copies of a Y-shaped tree)

DO 7.27. Let T be a tree on n vertices. Prove: the number of copies of T in Kn is

n!

|Aut(T )|
.

Theorem 7.28 (Cayley’s Formula). Kn has nn−2 spanning trees. In other words, there are
nn−2 trees on a given set of n vertices.

7.3 Independent sets, chromatic number

Definition 7.29 (Independent set). Let G = (V,E) be a graph. We say that a subset A ⊆ V
is independent in G if the induced subgraph G[A] is empty (there are no edges among A).

Definition 7.30 (Independence number). α(G) is the maximum size of independent sets.

DO 7.31. Find α(Cn), α(Pn), α(Kn), α(Kr,s).

Definition 7.32 (Legal Coloring). A coloring f : V → {colors} of the vertices of G is legal
if neighbors always get different colors, i.e., if v ∼ w then f(v) 6= f(w). The chromatic
number χ(G) is the smallest number of colors in a legal coloring.

HW 7.33. Show that α(G)χ(G) ≥ n (7 points)

HW 7.34. Show that (∀d)( if (∀v ∈ V )(deg(v) ≤ d), then χ(G) ≤ d+ 1 ). (6 points)
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