
Discrete Math 37110 - Class 9 (2016-10-25)

Instructor: László Babai
Notes taken by Jacob Burroughs

Revised by instructor

9.1 Refresher of Last Class: Finite probability spaces, events, in-
dependence, random variables, expected value, indicator vari-
ables

Finite probability space: (Ω [a finite, nonempty set], P [a function called the probability distribution])
Regarding P , P : Ω→ R such that (∀a ∈ Ω)(P (a) ≥ 0) and

∑
a∈Ω P (a) = 1

An event A is a subset of Ω. P (A) =
∑

a∈A P (a) (If P is uniform, P (A) = |A|
|Ω|) P (A) =

1− P (A).
A trivial event is an event where P (A) = 0 or P (A) = 1. Some examples include (but

are not limited to) ∅ and Ω.

DO 9.1. These ( ∅ and Ω) are the only trivial events if and only if (∀a ∈ Ω)(P (a) > 0)

Definition 9.2 (Correlation of events). A,B are independent if P (A ∩B) = P (A) · P (B)
A,B are positively correlated if P (A ∩B) > P (A) · P (B)
A,B are negatively correlated if P (A ∩B) < P (A) · P (B)

Definition 9.3 (Independence of events). A1, . . . , Ak are independent if (∀I ⊆ [k])(P (
⋂

i∈I Ai) =
Πi∈IP (Ai)) (If |I| ≤ 1, this condition automatically holds; the remaining 2k−k−1 conditions
are necessary)

DO 9.4. If A1, . . . , Ak are independent, A1, . . . , Ak−1, Ak are independent.

DO 9.5. A,B,C independent implies A,B ∪ C independent

DO 9.6 (Boolean combinations of disjoint sets of independent events are independent). If
A1, . . . , Ak are independent, we have a partition [k] = B1∪̇B2∪̇ · · · ∪̇B` and we set Ci =
fi(Aj : j ∈ Bi), then C1, . . . , Ci are independent (where the fi are boolean functions)

Definition 9.7. Random variable: X : Ω→ R
Expected value: E(X) =

∑
a∈Ω P (a)X(a)

Theorem 9.8 (Alternate definition of expected value).

E(X) =
∑
y∈R

yP (X = y)

DO 9.9. Prove the Theorem. Note that for finite Ω this is a finite sum.
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Example 9.10. Expected number of heads in a sequence of n unbiased coin flips. (We
conjecture that it is n

2
.)

Let X denote the number of heads in the sequence.

E(X) =
n∑

y=0

yP (X = y)

=
n∑

y=0

y

(
n

y

)
1

2n

=
1

2n

n∑
y=1

y

(
n

y

)

=
n

2n

n∑
y=1

(
n− 1

y − 1

)
=

n

2n
2n−1

=
n

2

Definition 9.11. T : Ω→ R is an indicator variable if range(T ) ⊆ {0, 1}.

Definition 9.12 (Indicator variable assoicated with an event). For an event A ⊆ Ω define

the indicator variable θA : Ω→ {0, 1} by setting θA(a) =

{
1 a ∈ A
0 a 6∈ A

DO 9.13. The correspondence A 7→ θA is a bijection between events and indicator variables.

DO 9.14 (Expectation of indicator variable). E(θA) = P (A).

Hint. Notice that the event “θA = 1” is identical with the event A. Now use Theorem 9.8.

Definition 9.15 (Linear Combination of Functions). Given fi : Ω→ R and ci ∈ R, a linear
combination is

∑k
i=1 cifi

Definition 9.16 (Convex combination). A convex combination, also known as a weighted
average, is

∑
cifi where (c1, . . . , ck) is a probability distribution (ci ≥ 0,

∑
ci = 1).

DO 9.17. If b1, . . . , bk ∈ R and (c1, . . . , ck) is a probability distribution then min bi ≤∑
cibi ≤ max bi.

DO 9.18. In particular, from above, minX ≤ E(X) ≤ maxX.

DO 9.19 (Linearity of Expectation). If c1 . . . ck ∈ R and X1, . . . , Xk are random variables
(over the same probability space) then E(

∑
ciXi) =

∑
ciE(Xi).

Example 9.20. Alternate proof of the expected number of heads:
X = Y1 + · · · + Yn where Yi indicates that the i-th flip is heads. Then E(X) =∑n

i=1E(Yi) =
∑n

i=1 P (Yi = 1) =
∑n

i=1(1/2) = n/2.
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9.2 Independence of random variables

Definition 9.21 (Independence of a pair of random variables). The random variables X, Y
are independent if
(∀x, y ∈ R)(P (X = x ∧ Y = y) = P (X = x)P (Y = y))

Definition 9.22 (Independence of random variables). The random variables X1, . . . , Xk are
independent if
(∀x1, . . . , xk ∈ R)(P (X1 = x1 ∧ · · · ∧Xk = xk) =

∏
P (Xi = xi)

DO 9.23. Show that the events A1, · · ·Ak are independent if and only if their indicator
variables θA1 , . . . , θAk

are independent.

DO 9.24 (Multiplicativity of expectation 1). If X, Y are independent random variables then
E(XY ) = E(X)E(Y ).

DO 9.25 (Multiplicativity of expectation 2). If X, Y are independent random variables then
E(
∏
Xi) =

∏
E(Xi).

9.3 Variance, covariance

Definition 9.26. The variance of X is Var(X) = E((X − E(X))2)

DO 9.27. Prove: Var(X) ≥ 0. Moreover, Var(X) = 0 if and only if X is almost constant,
i.e., (∃c)(P (X = c) = 1).

Theorem 9.28. Var(X) = E(X2)− (E(X))2

Proof.

E((X −m)2) = E(X2 − 2mX +m2)

= E(X2)− 2mE(X) +m2

= E(X2)−m2

Corollary 9.29 (Cauchy-Schwarz). E(X2) ≥ (E(X))2

Note the spelling of “Schwarz.”

DO 9.30. Relate the above corollary to more familiar forms of Cauchy-Schwarz.

DO 9.31 (Variance of indicator variable). If P (A) = p then Var(θA) = p(1− p).
Definition 9.32. The covariance of the random variables X, Y is
Cov(X, Y ) = E(XY )− E(X)E(Y )

DO 9.33. Var(X) = Cov(X,X).

DO 9.34 (Variance of sum). If X = Y1 + · · ·+ Yk, then

Var(X) =
k∑

i=1

k∑
j=1

Cov(Yi, Yj).
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9.4 Random graphs

Definition 9.35 (Erdős–Rényi model of random graphs). Erdős and Rényi defined the

probability distribution Gn,p over the set of 2(n
2) graphs on a given set of n vertices is by

deciding adjacency of each pair of vertices by independent Bernoulli trials with probability
p of success. (We flip a biased coin for each pair of vertices.) (This requires

(
n
2

)
Bernoulli

trials.)

Notation 9.36. The notation G ∼ Gn,p means that G is a graph on a given set of n vertices,
selected at random according to the distribution Gn,p.

Let mG denote the number of edges of the graph G.

DO 9.37. For G ∼ Gn,p we have E(mG) = p
(
m
2

)
and E(number of triangles in G) = p3

(
n
3

)
.

HW 9.38 (Due Tuesday, 2016-11-01). Let G ∼ Gn,1/2 and let X denote the number of
triangles in G.

(a) Find Var(X) as a closed-form expression.

(b) Find an asymptotic formula for Var(X) in the form Var(X) ∼ cnd. Determine the
constants c and d. (6+4 points)
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