Discrete Math 37110 - Class 10 (2016-10-27)

Instructor: László Babai Notes taken by Jacob Burroughs Revised by instructor

10.1 Variance, Chebyshev's Inequality, Law of Large Numbers

A random variable X is a function from the sample space Ω to \mathbb{R} The expected value of X is $E(X) = \sum_{a \in \Omega} P(a)X(a) = \sum_{u \in \mathbb{R}} yP(X=y)$

Definition 10.1. X is a non-negative random variable if $(\forall a \in \Omega)(X(a) \geq 0)$

Theorem 10.2 (Markov's Inequality). If X is a non-negative random variable, then

$$(\forall b > 0) \left(P(X \ge b) \le \frac{E(X)}{b} \right)$$

Proof.

$$E(X) = \sum_{a \in \Omega} P(a)X(a) \ge \sum_{a \in \Omega \land X(a) \ge b} P(a)X(a) \ge b \sum_{a \in \Omega \land X(a) \ge b} P(a) = bP(X \ge b)$$

Since b is positive, we then get $P(X \ge b) \le \frac{E(X)}{b}$

Theorem 10.3 (Chebyshev's Inequality). For any random variable X,

$$P(|X - E(X)| \ge d) \le \frac{\operatorname{Var}(X)}{d^2}$$

Proof. Let m=E(X) and $Y=(X-m)^2\geq 0$. The left hand side is equivalent to $P(Y\geq d^2)$. By Markov's Inequality, $P(Y\geq d^2)\leq \frac{E(Y)}{d^2}=\frac{\mathrm{Var}(X)}{d^2}$

Recall: if $X = Y_1 + \cdots + Y_k$, then

$$Var(X) = \sum_{i=1}^{k} \sum_{j=1}^{k} Cov(Y_i, Y_j).$$

Corollary 10.4. If Y_1, \ldots, Y_k are pairwise uncorrelated, then $Var(\sum Y_i) = \sum Var(Y_i)$

Corollary 10.5. If Y_1, \ldots, Y_k are pairwise independent, then $Var(\sum Y_i) = \sum Var(Y_i)$

Property	Assumption
Linearity of expectations	no assumption
Additivity of variance	pairwise independence (uncorrelated is sufficient)
Multiplicativity of expectation	(fully) independent

Definition 10.6. The distribution of a random variable X is the function $f_X : \mathbb{R} \to \mathbb{R}$ defined by $f_X(y) = P(X = y) \quad (y \in \mathbb{R})$. (This definition only works for finite sample spaces or more generally, for discrete random variables.)

Example 10.7. For the binomial distribution (number of successes in a sequence of n independent Bernoulli trials), $f_{X_n}(x) = \binom{n}{y} p^y (1-p)^{n-y}$.

DO 10.8. Show that $Var(\alpha X) = \alpha^2 Var(X)$ for all $\alpha \in \mathbb{R}$.

Definition 10.9. X and Y are identically distributed if $f_X = f_Y$. A sequence of "i.i.d. random variables" means a sequence of independent, identically distributed random variables.

Theorem 10.10 (Baby law of Large Numbers). Let X_n be the number of successes in a sequence of n i.i.d. Bernoulli trials with success probability p. For every (fixed) $\epsilon > 0$, the probability $P\left(\left|\frac{X_n}{n} - p\right| \ge \epsilon\right)$ approaches zero as $n \to \infty$.

Proof.

$$P\left(\left|\frac{X_n}{n} - p\right| \ge \epsilon\right) \le \frac{\operatorname{Var}\left(\frac{X_n}{n}\right)}{\epsilon^2} = \frac{\operatorname{Var}(X_n)}{n^2 \epsilon^2} = \frac{np(1-p)}{n^2 \epsilon} \le \frac{1}{4n\epsilon^2} \to 0.$$

10.2 Directed graphs, strong components, cut, tournaments

DO 10.11. Check graph and digraph terminology in LN.

Definition 10.12 (Directed graph/digraph). G = (V, E) where $E \subseteq V \times V$.

We may put a little arrow on top of the G to emphasize that we are talking about digraphs, but this is not mandatory: $\vec{G} = (V, \vec{E})$

Definition 10.13 (Directed Path). $\vec{P_n}$ is the directed path of length n-1 (with n vertices). Here $n \ge 1$.

Definition 10.14 (Directed Cycle). \vec{C}_n is the directed cycle with n vertices $(n \geq 1)$. A cycle with just one vertex is called a (self)-loop.

Definition 10.15. Given $v, w \in V$, we say that w is accessible from v if there exists a (directed) path from v to w.

DO 10.16. Prove: accessibility is a (a) reflexive and (b) transitive relation on V.

Hint. (a) Use paths of length 0 \vec{P}_1 (b) Use the next exercise.

DO 10.17. Prove that if there exists a walk from u to w, then there exists a path from u to w. (Walks may repeat vertices and edges.)

DO 10.18. Show that mutual accessibility is an equivalence relation.

Definition 10.19. The equivalence classes of the mutual accessibility relation are called the strong components of G.

Definition 10.20. (A, B) is a cut of G if $V = A \dot{\cup} B$ (disjoint union) and $A, B \neq \emptyset$, and $E(B, A) = \emptyset$ where E(A, B) is the set of edges from B to A

Definition 10.21. A digraph G is strongly connected if it has just one strong component; in other words, $(\forall u, w \in V)(w \text{ is accessible from } v)$

HW 10.22. A digraph G is strongly connected if and only if there does not exist a cut. (7 points)

Definition 10.23. G digraph is weakly connected if \widetilde{G} , the undirected version of G, is connected.

Definition 10.24. A digraph G is Eulerian if $(\forall v \in V)(\deg^+(v) = \deg^-(v))$ (where \deg^+ is the out-degree and \deg^- is the in-degree)

XC 10.25. If \vec{G} is Eulerian and weakly connected, then it is strongly connected. (5 points)

Definition 10.26. Given an undirected graph G, \vec{G} is an orientation of G if we assign an direction to each edge. The number of orientations of G is 2^m

Definition 10.27. An oriented graph is a digraph without cycles of length 1 or 2

Definition 10.28. A tournament is an orientation of K_n

DO 10.29. The number of tournments on a given set of n vertices is $2^{\binom{n}{2}}$.

DO 10.30. Prove that every tournament has a Hamilton path.

XC 10.31. Prove that every strongly connected tournament has a Hamilton cycle. (5 points)

DO 10.32. Find a strongly connected digraph that is not Hamiltonian (has no Hamilton cycle).

Definition 10.33. A legal coloring on a digraph is a coloring c of the vertices such that that $(i,j) \in E \implies c(i) \neq c(j)$. The chromatic number of a digraph G is the minimum number of colors in a legal coloring of G. So if G has no loops then $\chi(G) = \chi(\widetilde{G})$.

XC 10.34. (a) If $(\forall v \in V)(\deg^+ \le k)$, then $\chi(\vec{G}) \le 2k + 1$.

(b) Prove that this bound is tight for every $k \ge 1$. (6+3 points)