Discrete Math 37110 - Class 11 (2016-11-01)

Instructor: Laszl6 Babai
Notes taken by Jacob Burroughs
Revised by instructor

11.1 Winning strategy

Example 11.1 (Divisor game). Fix n > 2. Two players alternate picking positive divisors
of n. No player can pick a divisor of a previously selected number. Whoever is forced to
pick n loses.

CH 11.2. The first player has a winning strategy.

11.2 Ramsey Theory, Erd6s’s Probabilistic Method

Example 11.3 (Ramsey game). Given a set of 6 points, two players, “red” and “blue,”
alternate joining pairs of points by a line of their color. The first player to make a triangle
in their color loses.

Notation 11.4 (Erdés-Rado arrow symbol). n — (k,¢) if for all colorings of E(K,) —
{red, blue} either red K} or IblueK,. Notation for the diagonal case: If n — (k, k), we
denote this circumstance by n — (k).

DO 11.5. 6 — (3,3)
DO 11.6. 10 — (4,3)
CH 11.7. 9 — (4,3)
DO 11.8. (a) Define n — (k, ¢, m)
(b) Prove 17 — (3,3, 3)
Theorem 11.9 (Erdés-Szekeres). (/) — (k+ 1,0+ 1)

DO 11.10. Prove this theorem by induction on k + /.
Hint. The inductive step: reduce (k,¥) to (k — 1,¢) and (k,¢ — 1), using Pascal’s Identity.

Base case: k=1or =1. If k=1, we have ('"7*) =1+ ¢ — (2,£+1). Same for ¢ = 1.

DO 11.11. Read bio of Frank Plumpton Ramsey
Theorem 11.12 (Ramsey’s Theorem (special case)). (Vki,...,k.)(3n)(n — (ki,..., k)

Remark 11.13. This case is special in that it deals with partitions of (‘2/) The general case
deals with partitions of (‘s/) for any fixed s.



CH 11.14. Prove Ramsey’s Theorem for triples (we color (‘g))

Remark 11.15 (Ramsey numbers). Define R(k) to be the smallest n such that n — (k, k).
R(4) is known; R(5) is an open problem, and R(6) is not believed to be solvable.

DO 11.16. If n' > n — (k,{), then n’ — (k, ()
We observe that n — (3 log, n)s
DO 11.17. Prove n /4 (y/n + 1)3 by an explicit example. You may assume n = k2.

If n — (k,¢), ¥ graphs G with n vertices, either the clique number w(G) > k or the
independence number a(G) > /¢
On the flip side of the observation above, n 4 (2logyn + 1),

Proof.

Lemma 11.18. For almost all graphs G, a(G) < 2logsn + 1
Let AC[n]=V. Let |A| =k
2
P(3ACV,|A| =k, 0) < (Z)ﬁ, by union bound
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In order to show that the right-hand side approaches zero, it suffices to show that
n
—— < 1, which is equivalent to 1 +2logyn < k. ]
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Corollary 11.19. For almost all graphs, there is no homogeneous subset of size 1+ 2log,n
Corollary 11.20. n 4 (1 + 2log, n)s for sufficiently large n

Remark 11.21. An explicit construction for the above corollary, or anything close, has not
been found.

Remark 11.22. The Probabilistic Method proves the existence of objects with certain
properties without constructing such objects. The method proves existence by constructing
a probability space and proving that random sampling will find an object with the desired
properties with positive probability. Often (as above), the object is found with high porba-
bility. Yet, often an explicit construction of such objects is extremely difficult.

CH 11.23. (Vk)(3G)(G 3 K3, x(G) > k)
DO 11.24. For almost all graphs, x(G) > (w(G))'".



11.3 Planar graphs

Definition 11.25. G is planar if there exists a plane drawing of G without intersections of
edges.

Example 11.26. K is planar.

Theorem 11.27. K5 and K33 are not planar.

DO 11.28. Infer this theorem from the following two results.
Theorem 11.29. If G is a planar graph with n > 3, then m < 3n — 6.

Theorem 11.30. If G is planar and triangle-free with n > 3, then m < 2n — 4.

n m f n-m-+f
Tetrahedron 4 6 4 |2
Cube 8 12 6 |2
Example 11.31. y \ hodron |6 12 8 |2
Dodecahedron | 20 30 12| 2
Isocahedron 12 30 201 2

Theorem 11.32 (Euler’s formula). If G is connected, planar then n —m + f = 2.
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