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Revised by instructor

12.1 Monotone subsequences, the Pigeonhole Principle

Given a1, a2, . . . , an ∈ R, we call ai1 < ai2 < · · · air where i1 < i2 < · · · < ir an increasing
subsequence, and the reverse a decreasing subsequence.

Theorem 12.1 (Erdős-Szekeres). If n = k` + 1 then every sequence of length n of distinct
real numbers has an increasing subsequence of length k + 1 or a decreasing subsequence of
length `+ 1.

Proof. Assume this is false. Let xi denote the length of the longest increasing subsequence of
which ai is the last term, and let yi denote the length of the longest decreasing subsequence
of which ai is the last term. Then for a given ai and corresponding (xi, yi) 1 ≤ xi ≤ k and
1 ≤ yi ≤ `. So we only have k` options for the the pair (xi, yi). But n > k`, so, by the
pigeon-hole principle, (xi, yi) = (xj, xj) for some i < j. But if ai < aj, then xi < xj and if
ai > aj then yi < yj. This gives a contradiction, proving the Erdös-Szekeres theorem.

Corollary 12.2. If n = k2 + 1, there exists a monotone subsequence of length ≥ k + 1.

12.2 Inclusion-Exclusion

Let A1, . . . , Ak ⊆ Ω and B = A1 ∪ · · · ∪ Ak

Given P (Ai), P (Ai ∩ Aj), P (Ai ∩ Aj ∩ A`), etc., how do we find P (B)?

Theorem 12.3 (Inclusion–Exclusion). P (B) = S0 − S1 + S2 − · · · , where S0 = 1, and
Sj =

∑
i1<i2<···<ij

P (Ai1 ∩ Ai2 ∩ · · · ∩ Aij).

Proof. Let x ∈ Ω. Let r(x) = |{i | x ∈ Ai}|

x was counted kx times: kx =
(
r
0

)
−
(
r
1

)
+
(
r
2

)
+ · · · = (1− 1)r = 0r =

{
1 if r = 0

0 otherwise

Theorem 12.4 (Restatement of the Inclusion-Exclusion formula).

P (B) =
∑
I⊆[n]

(−1)|I|P

(⋂
i∈I

Ai

)
.

DO 12.5. Show that Theorems 12.3 and 12.4 are equivalent.

We define the indicator of the set A ⊆ Ω by setting θA(x) =

{
1 x ∈ A
0 x 6∈ A

for x ∈ Ω.
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DO 12.6. Show that θAθB = θA∩B

DO 12.7. Show that θA∪B = θA + θB − θAθB

DO 12.8.
(1 + x1)(1 + x2) · · · (1 + xk) =

∑
I⊆[k]

∏
i∈I

xi

(1− x1)(1− x2) · · · (1− xk) =
∑
I⊆[k]

(−1)|I|
∏
i∈I

xi

Alterantive proof of Inclusion–Exclusion. We find that

θB =
∏

θAi
=
∏

(1− θAi
) =

∑
I⊆[k]

(−1)|I|θ⋂
i∈I Ai

.

Therefore

P (B) = E(θB) =
∑
I⊆[k]

(−1)|I|E(θ⋂
i∈I Ai

) ==
∑
I⊆[k]

(−1)|I|P

(⋂
i∈I

Ai

)
.

Definition 12.9. A derangement of a set A is a fixed-point-free permutation of A.

DO 12.10. Let dn denote the probability that a random permutation of the set [n] is a

derangement. Prove: limn→∞ dn = 1/e. In fact,

∣∣∣∣dn − 1

e

∣∣∣∣ < 1

(n+ 1)!
.

DO 12.11. Bonferroni’s inequalities:

P (B) ≤ S0

P (B) ≥ S0 − S1

P (B) ≤ S0 − S1 + S2

P (B) ≥ S0 − S1 + S2 − S3

...

12.3 Planarity, multigraphs, Euler’s formula

Definition 12.12. A multigraph G = (V,E, f) consists of a set V of vertices, a set E of
edges, and a map f : E → V ∪

(
V
2

)
; this map defines the two endpoints of the edge. If the

two endpoints are the same, we say that the edge is a loop. Note that multiple edges can
have the same set of endpoints.
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Definition 12.13. A simple arc is the range of a continuous injection f : [0, 1]→ R2 of the
[0, 1] segment into the plane. A Jordan curve is the range of a continuous injection of the
unit circle in the plane, or equivalently, the range of a continuous map f : [0, 1] → R2 such
that f(x) = f(y) ⇐⇒ x = y or {x, y} = {0, 1}.

Definition 12.14. Given a multigraph G, a plane embedding G̃ of G associates with every
vertex a point of the plane and with every edge a simple arc between its endpoints so that
those arcs do not intersect except in their shared vertices.

Definition 12.15. A multigraph G is planar if there exists a plane embedding of G. A
plane (multi)graph is a (multi)graph embedded in the plane.

Definition 12.16. We define a face of a plane graph G̃ as a connected component of R2 \ G̃.
(The connected components are the equivalence classes of R2 \ G̃ under the relation “equal
or accessibile by a simple arc.”)

Theorem 12.17 (Jordan curve Theorem). A Jordan curve has two faces.

The ≤ 2 part is easy but proving ≥ 2 is suprisingly hard.

Theorem 12.18 (Euler’s formula). If G is a connected multigraph and G̃ a plane embedding

of G then (̃G) satisfies n−m+ f = 2.

Remark 12.19. Note that if G is a cycle then Euler’s formula is equivalent to the Jordan
curve theorem.

DO 12.20. Prove: a plane embedding of a tree has one face. Hint: induction on n.

DO 12.21. Prove Euler’s formula by induction on m, using the case of trees as the base
case. Note where you use the Jordan curve theorem.
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