
Discrete Math 37110 - Class 14 (2016-11-10)

Instructor: László Babai
Notes taken by Jacob Burroughs

Revised by instructor

14.1 Plane graphs, duality

Definition 14.1. A plane graph is representation/drawing of a graph in the plane (or on
the sphere).

Definition 14.2. G is planar if there exists a plane drawing of G.

Definition 14.3. The dual of a plane multigraph graph is the plane multigraph where every
face of the original multigraph becomes a vertex, and an edge connects any vertices whose
corresponding faces share an edge in the original graph.

Example 14.4. The dual of the cube (n = 8,m = 12, f = 6) is the octahedron (n = 6,m =
12, f = 8).

In general, ndual = f , mdual = m, and fdual = n

DO 14.5. The dual of a dual is the original multigraph.

HW 14.6. (a) Draw two plane multigraphs that are isomorphic as multigraphs but have
non-isomorphic duals. Make the number of edges as small as possible. You do not need to
prove minimality.
(b) Solve the same problem with graphs (not multigraphs). Neither the graph nor either of
the two non-isomorphic duals should have multiple edges or loops. Again, make the number
of edges as small as possible. You do not need to prove minimality.
(5+4 points)

Definition 14.7. Number of sides of a face: if the face touches an edge from both sides,
then that edge counts twices towards the number of sides. For instance a tree with n vertices
has 1 face, and that face has 2n− 2 sides.

Theorem 14.8 (Handshake theorem for faces). The sum of the number of sides of the faces
of a graph is 2m.

Definition 14.9. A graph with n ≥ 2 vertices is k-connected if for all v 6= w ∈ V there
exist k internally disjoint paths from v to w. (The paths don’t share interior vertices, only
their endpoints are shared.)

Theorem 14.10 (Whitney). If k is a 3-connected planar graph then its drawing on the
sphere is unique (up to natural equivalence and reflection).

Theorem 14.11. The vertices and edges of convex polyhedron form a 3-connected planar
graph.

Theorem 14.12 (Mani). Every 3-connected planar graph occurs this way (as the vertices
and edges of a convex polyhedron).
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14.2 Permutations, determinants

Definition 14.13. Mn(R) is the set of all real n× n matrices.
Mn(Z) is the set of all integral n× n matrices.

Definition 14.14 (Determinant). Let A ∈Mn(R). Then

det(A) =
∑
σ∈Sn

sgn(σ)
n∏
i=1

aiσ(i).

Sn is the set of all permutations of [n]. Given σ ∈ Sn, i 6= j ∈ [n] are in inversion if
(i− j)(σ(i)−σ(j)) < 0. Then we define Inv(σ) to be the number of pairs {i, j} in inversion.

DO 14.15. 0 ≤ Inv(σ) ≤
(
n
2

)
.

DO 14.16. Inv(σ) = 0 ⇐⇒ σ = id

DO 14.17. Inv(σ)(σ) =
(
n
2

)
⇐⇒ σ = reversal

Definition 14.18. sgn(σ) = (−1)Inv(σ). We say that a σ is an even permutation if sgn(σ) = 1
and an odd permutation if sgn(σ) = −1.

We define multiplication (composition) of permutations left-to-right: στ(i) = τ(σ(i)).
Every permutation can be uniquely represented by directed graph consisting of disjoint

directed cycles.
A cyclic permutation is a permutation with a single cycle of length > 1 (the other points

are fixed). A cycle of length k is denoted as (a1 a2 · · · ak) where σ(ai) = ai+1 where the
subscript is calculated mod k.)

A cycle of length 2 is called a transposition. A “neighbor-swap” is a transposition of the
form (i i+ 1).

DO 14.19. If τ is a neighbor swap then |Inv(στ)− Inv(σ)| = 1 for any σ ∈ Sn.

DO 14.20. sgn(στ) = − sgn(σ).

DO 14.21. If τ1, . . . , τk are neighbor swaps, then sgn(στ1 . . . τk) = sgn(σ)(−1)k.

DO 14.22. If τ1, . . . , τk are neighbor swaps, then sgn(τ1 . . . τk) = (−1)k

DO 14.23. Every permutation is a product of neighbor swaps.

DO 14.24. sgn(σ1σ2) = sgn(σ1) sgn(σ2)
In other words (for those who studied group theory), sgn is a homomorphism from the

group Sn to the multiplicative group {1,−1}.

DO 14.25. The transposition (i j) is the product of 2(j − i)− 1 neighbor swaps.

DO 14.26. Every transposition is an odd permutation.
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DO 14.27. If σ = τ1 · · · τk where the τi are transpositions, then sgn(σ) = (−1)k.

DO 14.28. Prove: for n ≥ 2, exacly half of the permutations is even and half is odd.

DO 14.29. Study “Sam Lloyd’s 15 puzzle.” Prove: exctly half of the configurations is
solvable.

DO 14.30 (Laplace expansion by row i). det(A) =
∑n

j=1 aijCij where Cij = (−1)i+j det(Aîĵ)
where Aîĵ) is the (n− 1)× (n− 1) matrix obtained from A by removing row i and column j.

HW 14.31. Find det(Tn) as a closed-form expression where Tn is the n × n tri-diagnal
matrix with entries aii = 1 = ai,i+1 = 1 and ai,i−1 = −1; all other entries are zero.

DO 14.32. If a row is all zeros, then det(A) = 0

DO 14.33. Show that sgn(σ) = sgn(σ−1) and in fact Inv(σ) = Inv(σ−1).

Definition 14.34. The transpose of the matrix A = (aij) is the matrix AT = (bij) where
bij = aji.

DO 14.35. det(A) = det(AT ).

DO 14.36. If we swap two columns of A to make A′, then det(A′) = − det(A).
More generally, letAσ beA with σ applied to the columns. Then det(A)σ = det(A) sgn(σ).

DO 14.37. If two columns of A are equal then det(A) = 0.

Definition 14.38 (Elementary column operation). Let A = [a1, . . . , an] be a matrix with
columns a1, . . . , an. An elementary column operation on A is defined by the triple (i, j, λ)
where i, j ∈ [n]; the result is the new matrix A′ with columns a′1, . . . , a

′
n where a′i = ai− λaj

and a′k = ak for all k 6= i.

DO 14.39. If A′ is obtained from A be an elementary column operation then det(A′) =
det(A).

DO 14.40. If the columns of A are linearly dependent then det(A) = 0.

DO 14.41. The converse holds as well, i.e., if det(A) = 0 then the columns of A are linearly
dependent.

Notation 14.42. The identity matrix I = In is the n × n matrix with I = (δij) where
δij = 1 if i = j (diagonal) and δij = 0 if i 6= j (“Kronecker delta”). All entires of the all-ones
matrix J are equal to 1.

HW 14.43. Let A = aI + b(J − I) (all diagonal entries are equal to a and all off-diagonal
entries are equal to b). Find a closed-form expression of det(A) in terms of a, b, n.
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