
Discrete Math 37110 - Class 17 (2016-11-22)

Instructor: László Babai
Notes taken by Jacob Burroughs

Revised by instructor

17.1 Determinant, trace

DO 17.1. det(AB) = det(A) det(B)

Define trace(A) =
∑
aii = the sum of diagonal elements

DO 17.2. trace(A+B) = trace(A) + trace(B)

DO 17.3. If A ∈ Rk×` and B ∈ R`×k then trace(AB) = trace(BA)

17.2 Complex numbers

We use the symbol i with the rule i2 = −1. We write the vector (a, b) ∈ R2 as z = a+ bi and
call it a “complex number.” So C = {z = a + bi | a, b ∈ R} is the set of complex numbers.
We define addition and multiplication of complex numbers. Addition is componentwise, as
we add vectors in R2; multiplication is defined using the rule i2 = −1:

• (a) z1 + z2 = (a1 + a2) + (b1 + b2)i

• (b) z1 · z2 = (a1b1 − a2b2) + (a1b2 + a2b1)i

If b = 0 we say z is real. If a = 0 we say z is imaginary.
The complex conjugate of z is z = a− bi.
a is the “real part”: a = (z + z)/2 and b is the “imaginary part”: b = (z − z)/(2i)
z · z = a2 + b2 = |z|2

Theorem 17.4. If z 6= 0, then ∃1

z

Proof.
1

z
=

z

|z|2

The form a+ bi is called the canonical form of a complex number. The polar form of
a complex number is

z = r(cos(θ) = i sin(θ)

Here r = |z| is the absolute value and the angle θ is the argument. The argument θ is
unique modulo 2π.

We obtain the polar form as follows. We observe that |z0| = 1 where z0 = z/ |z|. Therefore
z = |z| · z0 = |z| (cos θ + i sin θ).
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DO 17.5. arg(z1z2) = arg(z1) + arg(z2) and then arg(zn) = n arg z

DO 17.6. cos(α + β) + i sin(α + β) = (cosα + i sinα)(cos β + i sin β)

DO 17.7 (Euler). We note that cosα + i sinα can be written as eiα. (Hint: power series.)

DO 17.8. The solutions to zn = 1 are the called the “complex n-th roots of unity.” Prove:
they are cos(2kπ

n
) + i sin(2kπ

n
) for k = 0, 1, . . . , n− 1.

Theorem 17.9 (Fundamental Theorem of Algebra). If f = a0 + a1t + · · · + ant
n ∈ C[t]

where an 6= 0 then (∃α1, · · · , αn ∈ C)(f(t) = an
∏n

j=1(t− αj))

The multiplicity of a root is the power to which the corresponding term is raised in the
factorization. The sum of the multiplicities is n.

DO 17.10. f has no multiple roots if and only if gcd(f, f ′) = 1

17.3 Fields

Definition 17.11. A field F is a set with two operations +,× such that

1. (F,+) is an abelian group.

2. (F×,×) is an abelian group, where F× = F \ {0}.

3. a(b+ c) = ab+ ac

DO 17.12. In a field, ab = 0 if and only if a = 0 or b = 0

Some examples of fields are R (real numbers), C (complex numbers), Q (rational num-
bers), Fp (p prime): the residue classes modulo p. The set of integers, Z does not form a
field.

DO 17.13. The set of residue classes modulo m forms a field if and only if m is a prime.
(Hint: you will need to use the prime property.)

Henceforth F denotes any field, but most of the time you can think of F being R or C.

17.4 Basis, rank, dimension. First miracle

In this section V is a vector space over a field F, i.e., F is the set of scalars.

Definition 17.14. Let B be a list of elements of V . We say that B is a basis of V if B is
linearly independent and B spans V .

DO 17.15. B is a basis if and only if each v ∈ V is a unique linear combination of B. So if
B = (b1, . . . , bn) then (∀v ∈ V )(∃!α1, . . . , αn ∈ F)(v =

∑n
i=1 αibi). — The coefficients αi are

called the coordinates of v wrt B. (wrt = “with respect to”)
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DO 17.16. B is a basis if and only if it is a maximal linearly independent set.

To prove this, use the following exercise.

DO 17.17. If b1, · · · , bk are linearly independent and b1, · · · bk, c are linearly dependent, then
c ∈ span(b1, · · · , bk)

DO 17.18. Every vector space has a basis. Hint: This is immediate from Exercise 17.16 if
the size of linear independent sets in V is bounded. Otherwise it follows from Zorn’s lemma
(set theory).

Theorem 17.19 (1st miracle of linear algebra). If v1, . . . , vk are linearly independent,
w1, . . . , w` are any vectors and v1, . . . , vk ∈ span(w1, . . . , w`) then k ≤ `

DO 17.20. Study proof of the above

DO 17.21. dimFn = n (equivalent to 1st miracle if dim defined as max number of lin indep
vectors)

The rank of a set S of vectors is the maximum number of linearly independent vectors
from S

17.5 Rank of a matrix

The column-rank of A is the rank of the set of columns
The column-space of A is the span of the columns

DO 17.22. The column-rank is the dimension of the column-space. (This is also equivalent
to the First Miracle.)

DO 17.23. A basis of F [t] is {1, t, t2, t3, . . . }

DO 17.24. Show that the column-rank of A+B ≤ column-rank of A + column-rank of B

DO 17.25. Elementary column operations do not change column-rank

DO 17.26. Elementary row operations do not change column-rank

DO 17.27. Starting from any matrix, through a sequence of elementary row and column
operations we can obtain a matrix that has at most one non-zero entry in each row and in
each column.

DO 17.28. Prove: if a matrix has at most one non-zero entry in each row and in each
column then its column-rank is equal to the number of non-zero entries and the row-rank is
also equal to the number of non-zero entries.

Theorem 17.29 (2nd miracle of linear algebra). The column-rank of A is equal to the
row-rank of A
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DO 17.30. Prove this theorem. (Hint: combine the preceding four exercises.)

Proof. Use column and row-operations until there is at most one nonzero entry in each row
and column. Let r be the number of nonzero entries remaining. Then both the row-rank
and the column-rank are equal to r. Now use exercises 17.25 and 17.26.

Definition 17.31. The rank of A is the column-rank/row-rank

DO 17.32. rk(A) = rk(AT )

17.6 Systems of linear equations

A system of k linear equations in n unknowns can be written as a matrix equation Ax = b
where A ∈ Fk×n, b ∈ Fk and x ∈ Fn.

DO 17.33. Ax = b is solvable if and only if the rank of A = the rank of the k × (n + 1)
matrix [A | b]. (Hint: use the next exercise.)

DO 17.34. If the columns of A ∈ Fk×n are a1, . . . , an and x = (x1, . . . , xn)n then Ax =
x1a1 + · · ·+ xnan. So the column space of A is {Ax | x ∈ Rn}.

Homogeneous system of linear equations: where b = 0 — always has trivial solution
x = 0.

Want to find U = {x | Ax = 0} ⊆ Fn (the set of solutions)

DO 17.35. Prove U ≤ Fn. The dimension of U is called the nullity of A.

DO 17.36. Rank-nullity theorem: dim(U) + rk(A) = n

DO 17.37. There exists a non-trivial solution to A ∈Mn(F) if and only if rk(A) < n

Theorem 17.38. The following statements are equivalent for A ∈Mn(F)

(a) rk(A) = n

(b) Ax = 0 has no no-trivial solutions

(c) ∃A−1 such that A−1A = AA−1 = I

(d) det(A) 6= 0

If either of these conditions (and therefore all of them) hold then we call A “non-singular”
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17.7 Eigenvalues, characteristic polynomial

Theorem 17.39. λ ∈ F is an eigenvalue of A ∈Mn(F) if and only if det(λI − A) = 0

DO 17.40. A polynomial of degree n with a lead coefficent of 1 is called monic.

Definition 17.41. The characteristic polynomial of A ∈Mn(F) is fA(t) = det(tI − A)

DO 17.42. (a) The characteristic polynomial of A ∈Mn(F) is a monic polynomial of degree
n. (b) Let fA(t) = a0 + a1t + · · · + ant

n. Then an = 1 (monic), an−1 = − trace(A), and
a0 = (−1)n det(A).

Theorem 17.43. The eigenvalues of A are precisely the roots of its characteristic polynomial

Corollary 17.44. A ∈Mn(F) has at most n eigenvalues.

HW 17.45. Find the eigenvalues in C of the rotation matrix:

Rθ =

[
cos θ − sin θ
sin θ cos θ

]
Also find the corresponding eigenvectors in C2

DO 17.46. Prove: the x 7→ Rθx transformation rotates R2 by θ.

Definition 17.47. An eigenbasis of A is a basis of Fn consisting of eigenvectors of A.

HW 17.48.

[
1 1
0 1

]
has no eigenbasis over R or C

17.8 Standard dot product, orthogonality, Spectral Theorem

Definition 17.49. For a, b ∈ Rn we write a · b = aT b =
∑n

i=1 aibi, the standard dot product.

We call a, b orthogonal if a · b = 0. The norm of the vector a is ||a|| =
√∑n

i=1 a
2
i . A list

of vectors, v1, . . . , vk ∈ Rn, is orthogonal if they are pairwise orthogonal. It is orthonormal
if in addition ||vi|| = 1. So v1, . . . , vk are orthonormal exactly if vivj = δij (Kronecker delta).
(δij are the entries of the identity matrix.)

Theorem 17.50 (Spectral Theorem). If A ∈Mn(R) and A = AT , then A has an orthonor-
mal eigenbasis

HW 17.51. Find the orthonormal eigenbasis of

[
1 1
1 0

]
and find the corresponding eigen-

values.

5


	Determinant, trace
	Complex numbers
	Fields
	Basis, rank, dimension. First miracle
	Rank of a matrix
	Systems of linear equations
	Eigenvalues, characteristic polynomial
	Standard dot product, orthogonality, Spectral Theorem

