
Discrete Math 37110 - Class 19 (2016-12-01)

Instructor: László Babai
Notes taken by Jacob Burroughs

Partially revised by instructor

Review: Tuesday, December 6, 3:30-5:20 pm; Ry-276
Final: Thursday, December 8, 10:30-12:30; Ry-251

DO 19.1. IMPORTANT. Study the relevant chapters of LN (about Markov Chains) and
the Linear Algebra online text.

19.1 Similar matrices

Definition 19.2. Let A,B ∈Mn(F) where F is a field (i.e. R,C)
A,B are similar if ∃C ∈Mn(F), ∃C−1 such that B = C−1AC. Notation A ∼ B.

DO 19.3. Similarity is an equivalence relation on Mn(F)

DO 19.4. If A ∼ B then trace(A) = trace(B). (Hint trace(CD) = trace(DC))

DO 19.5. If A ∼ B then det(A) = det(B). (Hint det(CD) = det(C) det(D))

DO 19.6. If A ∼ B then fA = fB (Their characteristic polynomials are equal)

19.2 Matrix of a linear map

Definition 19.7. A linear transformation is a function f : V → V where f(a + b) =
f(a) + f(b) and f(λa) = λf(a). Equivalently, f(

∑
αiai) =

∑
αif(ai)

Definition 19.8. A linear map is a function f : V → W with the same attributes.

DO 19.9. If v1, . . . , vn are a basis of V , w1, . . . , wn are arbitrary vectors in W , there exists
a unique linear map such that (∀i)(f(vi) = wi)

Definition 19.10. Coordinates: Let e = (e1, . . . , en) be a basis of V . Then every v ∈ V
can be uniquely written as v =

∑
αiei. THe αi are the coordinates of v wrt (with respect

to) the basis e.Arranged in a column vector, we write [v]e = (alpha1, . . . , αn)T (transpose,
to make it a column vector).

19.3 Change of basis

Definition 19.11 (Change of basis matrix). Take two bases: e = (e1, . . . , en) (the “old”
basis) and e′ = (e′1, . . . , e

′
n). The change of basis matrix is S = [[e′1]e, . . . , [e

′
n]e]. (The i-th

column lists the coordinates of e′i wrt e.)
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DO 19.12 (Change of coordinates under change of basis). [v]new = S−1[v]old

DO 19.13. [e]e′ = [e′]−1e

Definition 19.14 (Matrix of a linear map). Let ϕ : V → W be a linear map. Let e =
(e1, . . . , en) be a basis of V and f = (f1, . . . , fk) be a basis of W . The matrix of ϕ wrt this
pair of bases is

[ϕ]e,f = [[ϕ(e1)f , . . . , ϕ(en)f ]

So this is a k × n matrix.

DO 19.15 (Change of matrix under change of bases). Let us have a linear map ϕ : V → W .
Let e, f be “old” bases of V and W respectively, and e′, f ′ be new bases. Then define S, T
as the change of basis matrices.

Let A = [ϕ]e,f and A′ = [ϕ]e′,f ′

Then A′ = T−1AS

Corollary 19.16. If ϕ : V → V , then [ϕ]new = S−1[ϕ]oldS

Corollary 19.17. A ∼ B if and only if ∃ϕ : V → V and bases e, e′ such that A = [ϕ]e and
B = [ϕ]e′

Corollary 19.18. A linear transformation has a characteristic polynomial. (because similar
matrices have the same characteristic polynomial)

Definition 19.19. A is diagonalizable if A ∼ a diagonal matrix = D =

λ1 . . . 0...
. . .

...
0 . . . λn


Then fA(t) = fD(t) =

∏
(t− λi)

Example 19.20. A =

[
1 1
0 1

]
is not diagonalizable (since it is not similar to I).

DO 19.21. A matrix is diagonalizable if and only if it has an eigenbasis
Hint: A = [ϕ]e and make e′ the eigenbasis. Make S = [e′]e Then S−1AS is a diagonal

matrix D. You need to show that AS = SD

Corollary 19.22. If fA has n distinct roots, then A is diagonalizable.

Caveat: I is diagonalizable, yet it has multiple eigenvalues.

DO 19.23. A ∼ B =⇒ rkA = rkB

DO 19.24. (∀A)(∀S)(if S nonsingular then rk(AS) = rkA)

DO 19.25. rk(AB) ≤ rk(A) and rk(AB) ≤ rk(B)
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19.4 Eigensubspaces. Geometric and algebraic multiplicity of eigen-
values

Definition 19.26. Algebraic multiplicity of eigenvalue λ is its multiplicity in the character-
istic polynomial, i.e., it is the largest m such that (t− λ)m | fA.

Definition 19.27. Geometric multiplicity: The maximum number of linearly independent
eigenvectors to λ: Uλ = {x | Ax = λx} ≤ Fn

This is the eigensubspace to λ.

DO 19.28. λ is an eigenvalue if and only if dimUλ ≥ 1

The geometric multiplicity of λ is the dimension of Uλ

DO 19.29. dimUλ = n− rk(λI − A)

Hint: Rank–nullity

DO 19.30. The geometric multiplicity of λ is less than or equal to the algebraic multiplicity
of λ.

DO 19.31. Over C:
∑

λ∈C algebraic multiplicity of λ = n.

DO 19.32. Over C: A is diagonalize if and only if
∑

λ∈C geometric multiplicity of λ = n
∀λ, the algebraic and geometric multiplicities are equal.

DO 19.33. *
Over C, every matrix is similar to a triangular matrix
(This is a hint for the above exercise)

19.5 Norm, orthogonality in Rn

Over R:
The standard dot product in Rn: x · y = xTy =

∑
xiyi

x and y are orthogonal if x · y = 0
We define the norm ‖x‖ =

√
x · x =

√∑
x2i

DO 19.34. Cauchy-Schwarz inequality: |a · b| ≤ ‖a‖‖b‖

DO 19.35. Triangle inequality: ‖a+ b‖ ≤ ‖a‖+ ‖b‖

DO 19.36. Show Cauchy-Schwarz is equivalent to the triangle inequality.

DO 19.37. If v1, . . . , vk ∈ Rn are orthogonal and non-zero, they are linearly independent.

Definition 19.38. The operator norm of A ∈ Rk×n:

‖A‖ = sup
‖Ax‖
‖x‖
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DO 19.39. Show this supremum is a maximum.

DO 19.40. If A = (αij) then ‖A‖ ≥ |αij|

Theorem 19.41 (Spectral theorem). If A ∈ Mn(R) and A = AT (A is a symmetric real
matrix)then A has an orthonormal eigenbasis, i.e.,

(∃b1, . . . bn ∈ Rn)(bi · bj = δij =

{
1 i = j

0 i 6= j
, ‖bi‖ = 1, and Abi = λibi)

Any orthonormal system of eigenvectors can be extended to an orthonormal eigenbasis.

DO 19.42. If A = AT (A is symmetric) then ‖A‖ = |λ|max = maxi |Λi| .
Hint: Spectral theorem

19.6 Elements of spectral graph theory

DO 19.43. A connected undirected graph is aperiodic if and only if it is not bipartite.

Definition 19.44. The adjacency matrix of a graph: Ag = (aij) where aij =

{
1 i ∼ j

0 i 6∼ j

DO 19.45. The graph G is regular of degree r if and only if 1 is an eigenvector to eigenvalue
r.

DO 19.46. For an r-regular graph G, let λ1, . . . , λn be the eigenvalues of the adjacency
matrix. (Note: these are real because the adjacency matrix is symmetric.) ∀λ, |λ| ≤ r

DO 19.47. Let G be a regular graph of degree r with eigenvalues r = λ1 ≥ λ2 ≥ · · · ≥ λn.
Prove: λ2 = r if and only if G is disconnected. (a) Show that this follows from Perron–
Frobenius. (b) Prove this without using Perron–Frobenius.

DO 19.48. Let G be a connected regular graph of degree r. Then −r is an eigenvalue if
and only if G is bipartite.

19.7 Rate of convergence of random walk on a graph: spectral
estimate

Definition 19.49 (SLEM). Let A be a symmetric real matrix with eigenvalues λ1 ≥ λ2 · · · ≥
λn. Then SLEM(A) = maxi |λi| = max |λ2| , |λn| (second largest eigenvalue modulus)

Notation. J is the all-ones matrix.

Theorem 19.50 (Convergence rate of naive random walk on regular graph). Let G be a
connected regular non-bipartite graph. Let A be the adjacency matrix of A. So T = (1/r)A is
the transition matrix of the naive random walk on G. Then limT t = 1

n
J and ‖T t− 1

n
J‖ ≤ λt

where λ is SLEM(T ) = (1/r)SLEM(A) (so 0 < λ < 1).
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Proof. We shall show that the maximum absolute value of the eigenvalues of T t − 1
n
J is λt.

The all-ones vector 1 is an eigenvector of T to eigenvalue 1. Let e1 be its normalized
value: e1 = (1/

√
n)1. Let e1, e2, . . . , en be an orthonormal eigenbasis of T . We claim that

e1, e2, . . . , en is also an orthonormal eigenbasis of T t − (1/n)J .
For i ≥ 2 we have ei ⊥ e1 and therefore ei ⊥ 1. Therefore, for i ≥ 2 we have Jei = 0

and therefore (T t − (1/n)J)ei = T tei = λtiei. Also, T te1 = e1 (because T is stochastic
and therefore T t is stochastic), and the same holds for (1/n)J , so (1/n)Je1 = e1. There-
fore (T t − (1/n)J)e1 = 0. So e1, e2, . . . , en form an orthonormal eigenbasis of T t − (1/n)J
with eigenvalues (in this order) 0, λt2, . . . , λ

t
n. The maximum absolute value among these is

therefore λt, as claimed.
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