Discrete Math 37110 - Class 19 (2016-12-01)

Instructor: László Babai Notes taken by Jacob Burroughs Partially revised by instructor

Review: Tuesday, December 6, 3:30-5:20 pm; Ry-276 Final: Thursday, December 8, 10:30-12:30; Ry-251

DO 19.1. IMPORTANT. Study the relevant chapters of LN (about Markov Chains) and the Linear Algebra online text.

19.1 Similar matrices

Definition 19.2. Let $A, B \in M_n(\mathbb{F})$ where \mathbb{F} is a field (i.e. \mathbb{R}, \mathbb{C}) A, B are similar if $\exists C \in M_n(\mathbb{F}), \exists C^{-1}$ such that $B = C^{-1}AC$. Notation $A \sim B$.

DO 19.3. Similarity is an equivalence relation on $M_n(\mathbb{F})$

DO 19.4. If $A \sim B$ then $\operatorname{trace}(A) = \operatorname{trace}(B)$. (Hint $\operatorname{trace}(CD) = \operatorname{trace}(DC)$)

DO 19.5. If $A \sim B$ then $\det(A) = \det(B)$. (Hint $\det(CD) = \det(C) \det(D)$)

DO 19.6. If $A \sim B$ then $f_A = f_B$ (Their characteristic polynomials are equal)

19.2 Matrix of a linear map

Definition 19.7. A linear transformation is a function $f: V \to V$ where f(a+b) = f(a) + f(b) and $f(\lambda a) = \lambda f(a)$. Equivalently, $f(\sum \alpha_i a_i) = \sum \alpha_i f(a_i)$

Definition 19.8. A linear map is a function $f: V \to W$ with the same attributes.

DO 19.9. If v_1, \ldots, v_n are a basis of V, w_1, \ldots, w_n are arbitrary vectors in W, there exists a unique linear map such that $(\forall i)(f(v_i) = w_i)$

Definition 19.10. Coordinates: Let $\underline{e} = (e_1, \dots, e_n)$ be a basis of V. Then every $v \in V$ can be uniquely written as $v = \sum \alpha_i e_i$. The α_i are the *coordinates* of v wrt (with respect to) the basis \underline{e} . Arranged in a column vector, we write $[v]_{\underline{e}} = (alpha_1, \dots, \alpha_n)^T$ (transpose, to make it a column vector).

19.3 Change of basis

Definition 19.11 (Change of basis matrix). Take two bases: $\underline{e} = (e_1, \dots, e_n)$ (the "old" basis) and $\underline{e'} = (e'_1, \dots, e'_n)$. The change of basis matrix is $S = [[e'_1]_{\underline{e}}, \dots, [e'_n]_{\underline{e}}]$. (The *i*-th column lists the coordinates of e'_i wrt \underline{e} .)

DO 19.12 (Change of coordinates under change of basis). $[v]_{\text{new}} = S^{-1}[v]_{\text{old}}$

DO 19.13.
$$[\underline{e}]_{\underline{e}'} = [\underline{e}']_{\underline{e}}^{-1}$$

Definition 19.14 (Matrix of a linear map). Let $\varphi: V \to W$ be a linear map. Let $\underline{e} =$ (e_1,\ldots,e_n) be a basis of V and $\underline{f}=(f_1,\ldots,f_k)$ be a basis of W. The matrix of φ wrt this pair of bases is

$$[\varphi]_{\underline{e},\underline{f}} = [[\varphi(e_1)_{\underline{f}},\ldots,\varphi(e_n)_{\underline{f}}]$$

So this is a $k \times n$ matrix.

DO 19.15 (Change of matrix under change of bases). Let us have a linear map $\varphi: V \to W$. Let \underline{e}, f be "old" bases of V and W respectively, and \underline{e}', f' be new bases. Then define S, Tas the change of basis matrices.

Let
$$A = [\varphi]_{\underline{e},\underline{f}}$$
 and $A' = [\varphi]_{\underline{e'},\underline{f'}}$
Then $A' = T^{-1}AS$

Corollary 19.16. If $\varphi: V \to V$, then $[\varphi]_{new} = S^{-1}[\varphi]_{old}S$

Corollary 19.17. $A \sim B$ if and only if $\exists \varphi : V \to V$ and bases $\underline{e}, \underline{e}'$ such that $A = [\varphi]_e$ and $B = [\varphi]_{e'}$

Corollary 19.18. A linear transformation has a characteristic polynomial. (because similar matrices have the same characteristic polynomial)

Definition 19.19. A is diagonalizable if $A \sim$ a diagonal matrix $= D = \begin{bmatrix} \lambda_1 \dots 0 \\ \vdots \ddots \vdots \\ 0 \dots \lambda_n \end{bmatrix}$

Then
$$f_A(t) = f_D(t) = \prod (t - \lambda_i)$$

Example 19.20. $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ is not diagonalizable (since it is not similar to I).

DO 19.21. A matrix is diagonalizable if and only if it has an eigenbasis

Hint: $A = [\varphi]_{\underline{e}}$ and make \underline{e}' the eigenbasis. Make $S = [\underline{e}']_{\underline{e}}$ Then $S^{-1}AS$ is a diagonal matrix D. You need to show that AS = SD

Corollary 19.22. If f_A has n distinct roots, then A is diagonalizable.

Caveat: I is diagonalizable, yet it has multiple eigenvalues.

DO 19.23.
$$A \sim B \implies \operatorname{rk} A = \operatorname{rk} B$$

DO 19.24. $(\forall A)(\forall S)$ (if S nonsingular then $\operatorname{rk}(AS) = \operatorname{rk} A$)

DO 19.25.
$$\operatorname{rk}(AB) \leq \operatorname{rk}(A)$$
 and $\operatorname{rk}(AB) \leq \operatorname{rk}(B)$

19.4 Eigensubspaces. Geometric and algebraic multiplicity of eigenvalues

Definition 19.26. Algebraic multiplicity of eigenvalue λ is its multiplicity in the characteristic polynomial, i.e., it is the largest m such that $(t - \lambda)^m \mid f_A$.

Definition 19.27. Geometric multiplicity: The maximum number of linearly independent eigenvectors to λ : $U_{\lambda} = \{x \mid Ax = \lambda x\} \leq \mathbb{F}^n$

This is the eigensubspace to λ .

DO 19.28. λ is an eigenvalue if and only if dim $U_{\lambda} \geq 1$

The geometric multiplicity of λ is the dimension of U_{λ}

DO 19.29. dim
$$U_{\lambda} = n - \text{rk}(\lambda I - A)$$

Hint: Rank-nullity

DO 19.30. The geometric multiplicity of λ is less than or equal to the algebraic multiplicity of λ .

DO 19.31. Over \mathbb{C} : $\sum_{\lambda \in \mathbb{C}}$ algebraic multiplicity of $\lambda = n$.

DO 19.32. Over \mathbb{C} : A is diagonalize if and only if $\sum_{\lambda \in \mathbb{C}}$ geometric multiplicity of $\lambda = n$ $\forall \lambda$, the algebraic and geometric multiplicities are equal.

DO 19.33. *

Over \mathbb{C} , every matrix is similar to a triangular matrix (This is a hint for the above exercise)

19.5 Norm, orthogonality in \mathbb{R}^n

Over \mathbb{R} :

The standard dot product in \mathbb{R}^n : $x \cdot y = x^T y = \sum x_i y_i$ x and y are orthogonal if $x \cdot y = 0$ We define the norm $||x|| = \sqrt{x \cdot x} = \sqrt{\sum x_i^2}$

DO 19.34. Cauchy-Schwarz inequality: $|a \cdot b| \le ||a|| ||b||$

DO 19.35. Triangle inequality: $||a + b|| \le ||a|| + ||b||$

DO 19.36. Show Cauchy-Schwarz is equivalent to the triangle inequality.

DO 19.37. If $v_1, \ldots, v_k \in \mathbb{R}^n$ are orthogonal and non-zero, they are linearly independent.

Definition 19.38. The operator norm of $A \in \mathbb{R}^{k \times n}$:

$$||A|| = \sup \frac{||Ax||}{||x||}$$

DO 19.39. Show this supremum is a maximum.

DO 19.40. If
$$A = (\alpha_{ij})$$
 then $||A|| \ge |\alpha_{ij}|$

Theorem 19.41 (Spectral theorem). If $A \in M_n(\mathbb{R})$ and $A = A^T$ (A is a symmetric real matrix)then A has an orthonormal eigenbasis, i.e.,

$$(\exists b_1, \dots b_n \in \mathbb{R}^n)(b_i \cdot b_j = \delta_{ij} = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}, ||b_i|| = 1, \text{ and } Ab_i = \lambda_i b_i)$$

Any orthonormal system of eigenvectors can be extended to an orthonormal eigenbasis.

DO 19.42. If
$$A = A^T$$
 (A is symmetric) then $||A|| = |\lambda|_{\max} = \max_i |\Lambda_i|$. Hint: Spectral theorem

19.6 Elements of spectral graph theory

DO 19.43. A connected undirected graph is aperiodic if and only if it is not bipartite.

Definition 19.44. The adjacency matrix of a graph:
$$A_g = (a_{ij})$$
 where $a_{ij} = \begin{cases} 1 & i \sim j \\ 0 & i \neq j \end{cases}$

DO 19.45. The graph G is regular of degree r if and only if $\mathbf{1}$ is an eigenvector to eigenvalue r.

DO 19.46. For an r-regular graph G, let $\lambda_1, \ldots, \lambda_n$ be the eigenvalues of the adjacency matrix. (Note: these are real because the adjacency matrix is symmetric.) $\forall \lambda, |\lambda| \leq r$

DO 19.47. Let G be a regular graph of degree r with eigenvalues $r = \lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n$. Prove: $\lambda_2 = r$ if and only if G is disconnected. (a) Show that this follows from Perron-Frobenius. (b) Prove this without using Perron-Frobenius.

DO 19.48. Let G be a connected regular graph of degree r. Then -r is an eigenvalue if and only if G is bipartite.

19.7 Rate of convergence of random walk on a graph: spectral estimate

Definition 19.49 (SLEM). Let A be a symmetric real matrix with eigenvalues $\lambda_1 \geq \lambda_2 \cdots \geq \lambda_n$. Then SLEM $(A) = \max_i |\lambda_i| = \max_i |\lambda_2|, |\lambda_n|$ (second largest eigenvalue modulus)

Notation. J is the all-ones matrix.

Theorem 19.50 (Convergence rate of naive random walk on regular graph). Let G be a connected regular non-bipartite graph. Let A be the adjacency matrix of A. So T = (1/r)A is the transition matrix of the naive random walk on G. Then $\lim T^t = \frac{1}{n}J$ and $\|T^t - \frac{1}{n}J\| \leq \lambda^t$ where λ is SLEM(T) = (1/r)SLEM(A) (so $0 < \lambda < 1$).

Proof. We shall show that the maximum absolute value of the eigenvalues of $T^t - \frac{1}{n}J$ is λ^t . The all-ones vector $\mathbf{1}$ is an eigenvector of T to eigenvalue 1. Let e_1 be its normalized value: $e_1 = (1/\sqrt{n})\mathbf{1}$. Let e_1, e_2, \ldots, e_n be an orthonormal eigenbasis of T. We claim that e_1, e_2, \ldots, e_n is also an orthonormal eigenbasis of $T^t - (1/n)J$.

For $i \geq 2$ we have $e_i \perp e_1$ and therefore $e_i \perp \mathbf{1}$. Therefore, for $i \geq 2$ we have $Je_i = 0$ and therefore $(T^t - (1/n)J)e_i = T^te_i = \lambda_i^t e_i$. Also, $T^te_1 = e_1$ (because T is stochastic and therefore T^t is stochastic), and the same holds for (1/n)J, so $(1/n)Je_1 = e_1$. Therefore $(T^t - (1/n)J)e_1 = 0$. So e_1, e_2, \ldots, e_n form an orthonormal eigenbasis of $T^t - (1/n)J$ with eigenvalues (in this order) $0, \lambda_2^t, \ldots, \lambda_n^t$. The maximum absolute value among these is therefore λ^t , as claimed.