CMSC 36500 / MATH 37500 Algorithms in Finite Groups

Instructor: Laszlo Babai Notes by Robert Green

Spring 2017

NOTATION:

- 1. [n] denotes $\{1, ..., n\}$
- 2. CFSG: Classification of finite simple groups
- 3. The trivial group is the group consisting only of the identity element
- 4. $h^g = g^{-1}hg$ denotes the **conjugate** of h by G
- 5. $[g,h] = g^{-1}h^{-1}gh$ denotes the commutator of g and h
- 6. For $S \subseteq G$, $\langle S \rangle$ denotes the subgroup of G generated by S
- 7. G' denotes the commutator subgroup of G the subgroup of G generated by all commutators.
- 8. Aut(G) denotes the group of automorphisms of G
- 9. $PSL(d, \mathbb{F}) = SL(d, \mathbb{F})/Z(SL(d, \mathbb{F}))$
- 10. $G \cap \Omega$ denotes an action of G on the set Ω
- 11. x^g denotes the action of g on x
- 12. Stabilizer of $x \in \Omega$ in G under G-action on Ω is denoted $G_x = \{g \in G \mid x^g = x\}$
- 13. $Syl_p(G)$ denotes the set of Sylow p-subgroups of G
- 14. $Sym(\Omega)$: the symmetric group on Ω $S_n = Sym([n])$
- 15. $Alt(\Omega)$: the alternating group on Ω $A_n = Alt([n])$

1 Lecture 1 March 28, 2017

1.1 Some Preliminaries

DO 1.1. If τ is a (reflection/rotation by α) of \mathbb{R}^2 or \mathbb{R}^3 , and σ is any congruence of the space, then τ^{σ} is also a (reflection/rotation by $\pm \alpha$), respectively.

HW 1.2. Prove: $Inn(G) \triangleleft Aut(G)$.

Notation: the outer automorphism group of G is Out(G) := Aut(G)/Inn(G).

- **DO 1.3.** Z(G) and G' are normal in G.
- **DO 1.4.** Find the smallest pair (G, H) such that H is a normal subgroup that is not characteristic.

HW 1.5. Being a normal subgroup is not a transitive relation. Find the smallest counterexample.

Definition 1.6. The symmetric group acting on Ω is denoted $Sym(\Omega)$ and the symmetric group acting on [n] is denoted S_n .

Definition 1.7. Let \mathbb{F} be a field and let n be a positive integer. The general linear group $GL(n,\mathbb{F})$ is the group of nonsingular $n \times n$ matrices with entries in \mathbb{F}

DO 1.8. $Z(S_n)$ is trivial for n > 2

DO 1.9. $Z(GL(d, \mathbb{F}))$ consists of nothing besides the set of nonzero scalar matrices (scalar multiples of the identity).

Definition 1.10. The order of an element g, denoted by |g|, is the smallest n so that $g^n = 1$ (where "1" denotes the identity element). Equivalently the order of g is the order of the cyclic subgroup generated by g.

Definition 1.11. For a prime p, a p-group is a group whose elements are all of order a power of p.

DO 1.12. If G is finite, then G is a p-group if and only if |G| is a power of the prime p.

DO 1.13. If G is a finite nontrivial p-group, then Z(G) is nontrivial

DO 1.14. Find an epimorphism (surjective homomorphism) $GL(d,\mathbb{F}) \longrightarrow \mathbb{F}^{\times}$

Definition 1.15. An even permutation is the product of an even number of transpositions, and an odd permutation is the product of an odd number of transpositions. Check that this is well-defined, i.e., no permutation is simultaneously even and odd.

DO 1.16. For $n \geq 2$, $|S_n : A_n| = 2$

HW 1.17. A_n is the only subgroup of index two in S_n .

DO 1.18. A_n char S_n

Definition 1.19. A group is simple if it contains no nontrivial normal subgroups.

Theorem 1.20. For $n \geq 5$, A_n is simple.

Definition 1.21. The special linear group $SL(d,\mathbb{F})$ is the set of $d \times d$ matrices over \mathbb{F} with determinant 1

DO 1.22. $SL(d, \mathbb{F}) = GL(d, \mathbb{F}) \iff \mathbb{F} = \mathbb{F}_2$

DO 1.23. $SL \triangleleft GL$

DO 1.24. $Z(SL) = Z(GL) \cap SL$

DO 1.25. $|Z(GL(d, \mathbb{F}_q))| = q - 1$. Find $|Z(SL(d, \mathbb{F}_q))|$

DO 1.26. G is a simple abelian group if and only if $G \cong \mathbb{Z}_p$ for some prime p.

Definition 1.27. G is characteristically simple if G has no characteristic subgroup other than G and the trivial group.

DO 1.28. Let $T_1, ..., T_k$ be nonabelian simple groups. Count the normal subgroups $N \triangleleft T_1 \times ... \times T_k$. (Hint: the number is 2^k . Prove!)

Definition 1.29. An elementary abelian p-group is a group of the form \mathbb{Z}_n^k

DO 1.30. If T is a simple group, then T^k is characteristically simple.

DO 1.31. Prove the converse: if a finite group is characteristically simple then it is the direct product of isomorphic simple groups.

Definition 1.32. $N \triangleleft G$ is a minimal normal subgroup if $N \neq 1$ is normal in G and contains no other normal subgroups except the identity. We denote this by $N \stackrel{\min}{\triangleleft} G$.

DO 1.33. $G \stackrel{\text{min}}{\triangleleft} G \iff G \text{ is simple.}$

DO 1.34. If $N \stackrel{\min}{\triangleleft} G$ then N is characteristically simple.

The two smallest nonabelian simple groups are A_5 and $PSL(3, \mathbb{F}_2) \cong PSL(2, \mathbb{F}_7)$

DO 1.35. The set of upper triangular matrices over a fixed finite field of characteristic p form a p-group.

Definition 1.36. The commutator chain is a chain of commutator subgroups

$$G \ge G' \ge G'' \ge \dots$$

Definition 1.37. G is solvable if its commutator chain terminates at the trivial group

Theorem 1.38. (Schreier's Hypothesis) If G is finite simple then Out(G) is solvable. (This is a consequence of CFSG).

DO 1.39. If G is finite then G is solvable \iff all composition factors of G are abelian (i.e. cyclic of prime order).

Definition 1.40. A normal chain is a chain of subgroups

$$G = H_0 \ge H_1 \ge \dots \ge H_m = \{e\}$$

where $H_i \triangleleft G$ for all i.

Definition 1.41. A subnormal chain is as above, though we only require that each group is normal in its predecessor.

Definition 1.42. A composition chain is a maximal proper subnormal chain.

Definition 1.43. Composition factors are the quotients of consecutive groups in a composition chain.

Theorem 1.44. (Jordan-Holder) The multiset of isomorphism types of composition factors is unique.

HW 1.45. If G is a solvable finite group and $M \stackrel{\min}{\triangleleft} G$ then M is elementary abelian.

1.2 Permutation Groups and Actions

Definition 1.46. A G-action on a set Ω is a homomorphism $G \longrightarrow Sym(\Omega)$ and we say that G acts on Ω

Example 1.47. Conjugation by a fixed group element is an action of G on itself

DO 1.48. Suppose G acts on Ω and there exists $g \in G$ so that $x^g = y$. In this case we say $x \sim y$. Prove that \sim is an equivalence relation whose equivalence classes are orbits of G.

DO 1.49. (Orbit-Stabilizer) $|x^G| = |G:G_x|$

Definition 1.50. A G-action is transitive if it has only one orbit.

Example 1.51. Consider a subgroup $H \leq G$ and the coset space G/H. Define an action

$$Ha \mapsto Hag$$

DO 1.52. The above action is transitive; moreover these are the only transitive actions up to some equivalence (to be determined by the reader).

HW 1.53. If $|\Omega| = p^k$ for prime p and positive integer k, and G acts transitively on Ω , then $P \in Syl_p(G) \Rightarrow P$ is transitive.

Consider a permutation on Ω . Observe that it has a unique cycle decomposition (product of disjoint cycles).

Definition 1.54. The cycle type of a permutation $\sigma \in S_n$ is the way the lengths of the cycles partitions n. Example: cycle type $(3^2, 2^5, 1^4)$ means two 3-cycles, five 2-cycles (transpositions), and 4 fixed-points (degree $2 \cdot 3 + 5 \cdot 2 + 4 = 20$).

DO 1.55. Two permutations in S_n are conjugate if and only if they have the same cycle type.