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2 Lecture 2 March 30, 2017 Problems due April 4

2.1 Homework review

We will discuss a few of the homework problems from last time:

Review 2.1. If G is abelian and characteristically simple then G is elementary abelian (i.e. Zk
p for some p

prime and k positive integer)

Proof. Suppose p is a divisor of |G| and we write G additively. Then look at p · G := {px | x ∈ G}. Note
that pG is characteristic in G and pG 6= G (since the elements of order p are in the kernel of the x 7→ px
homomorphism). Since G is characteristically simple, pG = 0. Now apply the Fundamental Theorem of
Finite Abelian Groups.

Review 2.2. If M
min

C G then M is characteristically simple.

Proof. Any characteristic subgroup N of M is normal in G and therefore either N = M or N is trivial.

DO 2.3. Let G be solvable. Then for all H ≤ G we have H is solvable, and for every N CG, we have G/N
is solvable.

Review 2.4. If G is solvable and M
min

C G, then M is elementary abelian.

Proof. M ′ (the commutator subgroup of M) is characteristic and therefore either M ′ = M or M ′ = 1
(because M is characteristically simple). M ′ = M would imply that M is not solvable, contradicting the
solvability of G, so M ′ = 1, i.e., M is abelian. Now M is abelian and characateristicaly simple, therefore
elementary abelian by Review 2.1.

DO 2.5. Transpositions generate Sn and three-cycles generate An.

Review 2.6. An is the only subgroup of index two in Sn.

Proof. First we make some general observations about any group G and a subgroup H of index 2. We note
that H C G (since G \H is the only coset other than H, whether right coset or left coset). So there is an
epimorphism ϕ : G→ G/H ∼= {±1} where {±1} is a convenient way to think about the cyclic group of order
2 under multiplication. By definition, the kernel of ϕ is H. We note that (∀x ∈ H)(x2 ∈ kerϕ) because
ϕ(x2) = (ϕ(x))2 = (±1)2 = 1. So H ≥ 〈x2 | x ∈ G〉.

Now for G = Sn let K = 〈x2 | x ∈ Sn〉. We claim K = An. Indeed, let σ ∈ Sn be a 3-cycle. Then
σ3 = 1 and therefore σ = σ4 = (σ2)2, so σ ∈ K. So all 3-cycle belong to K. But the 3-cycles generate An,
so K ≥ An. In fact K = An (why?).

We proved that H ≥ An. But |Sn : H| = |Sn : An| = 2, so H = An.
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Alternatively, there is a quick way to prove this for n ≥ 5 by noting that An is simple, so the existence
of another (necessarily normal) subgroup N of index two implies that An∩N is normal in An, contradicting
simplicity of An. (However, the proof above is from first principles, and settles all cases.)

Review 2.7. If G ≤ Spk and G is transitive, then for P ∈ Sylp(G) we have that P is transitive.

Proof. We observe that |G : Gx| = |xG| = pk. We must show that |xP | = pk. Clearly, |xP | ≤ pk, so we need

to show |xP | ≥ pk, i.e., |P : Px| ≥ pk, i.e., |Px| ≤ |P |pk .

Let G have order p` ·m where p and m are coprime. It follows that p` = |P |, so we need to show that
|Px| ≤ p`−k. But |Gx| = |G|/pk = p`−km, and Px is a p-subgroup of Gx, so the order of Px divides p`−k.

2.2 Generators, group extensions, solvability

DO 2.8. If G is not abelian then G/Z(G) is not cyclic. (Note: this problem was erroneously stated in
class, with G′ in place of Z(G). Show that this statement is false.)

HW 2.9. If |G| = n then G can be generated by at most log2(n) elements.

HW 2.10. (a) If |G| = n then |Aut(G)| ≤ nlog2(n) with equality holding if and only if G is trivial. (b)
Prove that this bound is tight up to a constant factor for infinitely many values of n. In other words, find a
constant c > 0 and for infinitely many n, find G of order n such that |Aut(G)| > c · nlog2(n).

Definition 2.11 (Group extension). Suppose NCG and H = G/N . Then we say that “G is an extension
of N by H”. In category-theoretic notation, we write

1→ N → G→ H → 1

and say that this is an “exact sequence,” meaning that the image at the head of every arrow is the kernel at
the tail of the next arrow.

DO 2.12 (Solvable groups are closed under extension). If N and H are solvable and G is an extension of
N by H, then G is solvable.

DO 2.13. Sn and An × Z2 are extensions of An by Z2. Prove that for n > 2 these two groups are not
isomorphic. In particular, extensions are not unique.

DO 2.14. Find a nonabelian extension of Z7 by Z3

DO 2.15. No nonabelian extension of Z5 by Z3 exists.

DO 2.16. In fact, if G is abelian and |G| is square-free, then G is cyclic.

DO 2.17. Sn is solvable for n ≤ 4, and Sn is not solvable for n ≥ 5.

Theorem 2.18 (Feit–Thompson Theorem (1963), aka the “Odd-Order Theorem”).
If |G| is odd then G is solvable.

Definition 2.19 (Normal closure). Consider S ⊆ G. Then NClG(S) is the smallest normal subgroup of G
containing S. It is generated by the union of all conjugates of S.

DO 2.20. Let G be generated by S. Then G′ = NClG([x, y] | x, y ∈ S).
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2.3 Nilpotent groups

Definition 2.21 (Mutual commutator of two subgroups). For A,B ≤ G, we define

[A,B] := 〈[a, b] | a ∈ A, b ∈ B〉

DO 2.22. Let G′ = [G,G] be the commutator subgroup of G.

(a) G/G′ is abelian

(b) G′ is the smallest normal subgroup N such that G/N is abelian, i.e., if N CG and G/N is abelian then
N ≥ G′.

Definition 2.23 (Lower central series (aka “descending central series”)).

L0(G) = G and Li(G) = [Li−1(G), G]

DO 2.24. G = L0(G) ≥ L1(G) ≥ L2(G) ≥ . . .

DO 2.25. Li(G) char G

Definition 2.26 (Nilpotence class). G is nilpotent if there exists k so that Lk(G) = 1. G is nilpotent of
class k if k is the smallest such number.

DO 2.27. G is nilpotent of class 1 if and only if G is abelian. G is nilpotent of class 2 if and only if
G′ ≤ Z(G).

Problem 2.28 (Group Isomorphism problem). Given G and H, decide if G ∼= H.

A question arises here as to how the group is represented. If it is presented in terms of generators and
relations, then whether or not the group is trivial is already undecidable. So let’s be generous: suppose we
are given the Cayley table (multiplication table) of G and H.

HW 2.29. Suppose |G| = |H| = n. Give an algorithm to decide whether or nor G ∼= H in time nlog2(n)+c.

Theorem 2.30 (F. Wagner, D. Rosenbaum). Group isomorphism can be decided in time

n(log2 n)/4+c

.

OPEN PROBLEM 2.31. Decide group isomorphism in time no(log(n)) for nilpotent groups of class 2.

Definition 2.32 (Upper (ascending) central series).

Z0(G) = 1 and Zi(G)/Zi−1(G) = Z(G/Zi−1(G))

DO 2.33. Zi(G) char G. Therefore Zi(G) CG. Therefore the above inductive definition makes sense.

DO 2.34. 1 = Z0(G) ≤ Z1(G) ≤ L2(G) ≤ . . .

DO 2.35. Lk(G) = 1 ⇐⇒ Zk(G) = G. In particular, G is nilpotent if and only if the upper central series
reaches G, and the nilpotence class of G is the smallest k such that Zk(G) = G.

DO 2.36. If G is a nontrivial finite p-group then Z(G) is nontrivial. It follows that finite p-groups are
nilpotent.

DO 2.37. Nilpotent groups are closed under taking subgroups, quotients, and finite direct products, but not
under extensions.
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HW 2.38. Find the smallest group G such that G is an extension of a nilpotent group by a nilpotent group
but G is not nilpotent.

DO 2.39. If G is nilpotent then G is solvable. The converse is false; find the smallest counterexample.

Theorem 2.40 (Philip Hall). If G is nilpotent of class k with derived length d, then d ≤ 1 + log2(k)

DO 2.41. G is nilpotent ⇐⇒ all Sylow subgroups are normal ⇐⇒ G is a direct product of its Sylow
subgroups.

DO 2.42. Consider M(d, p), the p-group of upper triangular d × d matrices over Fp where all diagonal

elements are 1. Show that |M(d, p)| = p(
d
2) and the class of M(d, p) is d− 1.

2.4 Primitive permutation groups

Definition 2.43 (System of imprimitivity). Let G y Ω be a transitive action of a group G on a set Ω.
Let R be a G-invariant equivalence relation on Ω, i.e., RG = R. The equivalence classes of such a relation
are called blocks of imprimitivity, and the partition (set of blocks) is called a system of imprimitivity. A
system of imprimitivity is trivial if either there is just one block, |Ω|, or each block is a singleton (discrete
partition).

Example 2.44. Consider D6, the dihedral group of order 12, acting on the vertices of the regular hexagon.
Two nontrivial systems of imprimitivity are the set of opposite pairs of the hexagon (3 blocks), and the two
triangles whose vertices are two edges apart (2 blocks).

Definition 2.45. We say that a group action is imprimitive if there exists a nontrivial system of imprim-
itivity. An action is primitive if |Ω| ≥ 2 and the action is not imprimitive, i.e., the action has exactly two
(trivial) systems of imprimitivity. We say that a permutation group G ≤ Sym(Ω) is (im)primitive if its
action as a subgroup of Sym(Ω) is (im)primitive.

HW 2.46. Let G y Ω be a transitive action on a set Ω of size |Ω| ≥ 2. Prove: this action is primitive

⇐⇒ Gx
max

< G (Gx is a maximal subgroup of G, i.e., Gx 6= G and if Gx ≤ H ≤ G then H = Gx or H = G).

Definition 2.47 (Induced action of Sn on k-tuples). Sn acts naturally on
(
n
k

)
elements (corresponding to

the k-subsets of the [n]). We denote the permutation group definde by this action by S
(k)
n , so S

(k)
n ≤ S(n

k).

HW 2.48. Prove: S
(k)
n is primitive for 1 ≤ k < n/2 and imprimitive for k = n/2.
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