CMSC 36500 / MATH 37500 Algorithms in Finite Groups

Instructor: Laszld Babai
Scribe: Robert Green

Spring 2017

3 Lecture 3 April 4, 2017 Problems due April 6

3.1 Homework review

DO 3.1. Let T be a set of transpositions in .S,,. View 1" as the edges of an undirected graph with n vertices.
Prove that T generates S, if and only if this graph is connected.

Notation 3.2. For aset A, (1) :={T'C A| |T| = k} denotes the set of k-subsets of A.

Review 3.3. S < S(Z) (induced action of S,, on k-subsets) is primitive for 1 < k < n/2 and imprimitive
for k =n/2

Proof. Let |A| be an n-set (|A| =n). Let Q = (’2), so we are looking at the induced action of Sym(A) on (.
First we note that this action is transitive — any k-subset can be sent to any k-subset.

For k = n/2, pair up each k-subset with its complement. This pairing is an invariant partition of (‘2),
so the action is imprimitive.

For k < n/2, we need to show that the stabilizer of an element X € 2 is a maximal subgroup of Sym(A
Let Y = A\ X be the complement of X in A. Then the (setwise) stabilizer of X is H := Sym(X) x Sym(Y
We need to show that for any permutation = € Sym(A) \ H we have (H,w) = Sym(A). Let G = (H,r). Tt
suffices to show that G contains a transposition (z,y) such that x € X, y € Y. (Why is this sufficient?)

Since m ¢ H, there exist u,v € Y such that z := ™ € X and y := v™ € Y (why? — here we use that
Y| > |X]). So 7™ = (z,y), as desired. O

).
).

DO 3.4. For k = n/2, the only nontrivial system of imprimitivity is the system consisting of pairs of the
form {5, 5¢}.

Example 3.5. Consider the field F,, (p prime) and the set AGL(1,p) of affine linear transformations of Fy;
these are the transformations of the form x + ax + b (z € IF) where b € F, and a € F)\. This group has a
normal subgroup 7' consisting of the translations z — = + b.

DO 3.6. T has order p, T 'S AGL(1,p), and AGL(1,p)/T = F*

Theorem 3.7 (CFSG). (Tiny mazimal subgroups in symmetric groups) For all primes p ¢ {7,11,17,23},

max

AGL(1,F,) < S,

The label [CFSG] indicates that this result is only known to be derivable from the classification of finite
simple groups.

(Source: Martin Liebeck, Cheryl Praeger, Jan Saxl: “A classification of the maximal subgroups of the finite
alternating and symmetric groups,” Journal of Algebra 111 (1987) 365-383.)



Definition 3.8. We say that a group (action) is doubly transitive if it is transitive on the n(n — 1) ordered
pairs of elements of its permutation domain.

DO 3.9. AGL(1,p) is doubly transitive
Definition 3.10. AGL(d,F) is the set of d-dimensional affine linear transformations over a field F:
AGL(d,F) := {x — Ax +b | A € GL(d,F),b € F¥}
where x ranges over x € Fg. T again will denote the normal subgroup of translations x — x + b.
DO 3.11. 1. T is doubly transitive
2. T AGL(d,F)
3. AGL(d,F)/T = GL(d,F)

Definition 3.12. We say that a group (action) is t-transitive if it is transitive on the n(n—1)...(n —t+1)
ordered t-tuples of elements of its permutation domain. The largest such ¢ is the degree of transitivity of the
group action; we denote this quantity by deg-tr(G).

Example 3.13. The degree of transitivity for S, is n, and for A,, is n — 2.
Definition 3.14. A subgroup of S,, is a “giant” if it is S,, or A,,. (This is not an established terminology.)
Theorem 3.15. If G < S, is not a giant, then

1. (Bochert, 1896) deg-tr(G) = O(log® n/loglogn)

2. (Wielandt, 1934) deg-tr(G) < 3lnn

3. [CFSG] deg-tr(G) <5

3.2 A few more problems in group theory

HW 3.16. If G has a proper subgroup of index k then it has a proper normal subgroup of index < k!
DO 3.17. Forn > 5,ift H < S, and H # A,,, then |S, : H| > n

DO 3.18. The above is not true for Sy

Definition 3.19. If G ~ Q, then the homomorphism h : G — Sym(2) is called a permutation representation
of G.. Such a representation is called faithful if the kernel is trivial.

DO 3.20. Example of a non-faithful representation: Find an epimorphism f : S4 — S3 and its kernel.
HW 3.21. If G < S, is a transitive abelian subgroup then |G| =n

DO 3.22. If we drop the transitivity assumption above then |G| < 2/2 and this is tight for n even. For n
odd, find the tight bound.

DO 3.23. 1. Find the Sylow p-subgroups of S,,.
2. For P € Syl,(S,,) show that P is transitive if and only if n = "
3. Show that P is primitive if and only if n =p

DO 3.24. Infer from the above that if G is a p-group, then every maximal subgroup has index p and is
normal.

DO 3.25. Suppose G ~ Q and the corresponding homomorphism is ¢ : G — Sym(Q)). Consider G¥ =
Im(p) < Sym(Q2). Show that if G¥ is abelian then G, < G and ker(p) = G,.

DO 3.26. Suppose G ~ Q and x,y are in the same orbit. Then G, and G, are conjugate.



3.3 Graph theory

Definition 3.27. A graph is an ordered pair G = (V, FE) where V is a set (the set of “vertices”) and E C (‘2/)
(the set of “edges”). The singular of “vertices” is “vertex.”

Definition 3.28. A directed graph (digraph) is an ordered pair G = (V, E) where V is aset and E C V x V.
Edges of the form (z, ) are called “loops” or “self-loops.” We refer to E as the adjacency relation. Undirected
graphs can be interpreted as digraphs where the adjacency relation is symmetric and irreflexive.

Definition 3.29. For a digraph (V| E), we define E~ := {(y,z) | (z,y) € E}

Definition 3.30. A walk x — y of length k in a digraph is a sequence of vertices z = vg > vy = ... >V =y
so that (v;—1,v;) € FE for all i.

Definition 3.31. The adjacency matriz of a digraph G is a |V| x |V| matrix Ag = (a;;) where a;; = 1 if
(1,7) € E and a;; = 0 otherwise.

Example 3.32. Consider the matrix (Ag)?. Observe that the (i,7) entry of this matrix counts the directed
walks of length 2 from i to j.

DO 3.33. Consider the matrix (Ag)". Prove: the (i,7) entry of this matrix counts the directed walks of
length ¢ from i to j.

Definition 3.34. The (directed) distance from i to j, denoted dist(i,j), is the length of the shortest
(directed) walk from ¢ to j. For undirected graphs this is a metric on V.

Definition 3.35. We say that vertex j is accessible from vertex 4 if dist(i,j) < oo, or equivalently there
exists a walk 7 --» j.

Definition 3.36. We say that i and j are mutually accessible if 7 is accessible from j and j is accessible
from 1.

DO 3.37. Mutual accessibility is an equivalence relation on V. The equivalence classes of this relation are
called strong components of G. The digraph G is strongly connected if each vertex is accessible from each
vertex (there is just one strong component).

Definition 3.38. The symmetrization of a digraph G = (V, E), denoted G = (v, E)7 is an undirected graph
defined so that {z,y} € F if x # y and also we have z — y or y — z.

Definition 3.39. The weak components of a digraph G are the (strong) components of its symmetrization.
For undirected graphs the two concepts coincide, so we just talk about “components.”

Definition 3.40. We say y is an out-neighbour of x if x — y and an in-neighbour of x if y — x. The number
of out-neighbours of x is called the out-degree of x, denoted deg™ (z). The the number of in-neighbours of
is called the in-degree of x, denoted deg™ (x). For unidrected graphs, adjacent vertices are called neighbors
and the number of neighbors of vertex x is its degree, deg(x).

Definition 3.41. A digraph G is eulerian if for all vertices v, we have deg™ (v) = deg™ (v)
HW 3.42. If GG is an eulerian digraph then its weak components are strong.
DO 3.43. (Directed Handshake Theorem) For a digraph, prove:

S deg*(v) = 3 deg(v) = ||

veV veV

DO 3.44. (Undirected Handshake Theorem) For a graph, prove:

> deg(v) =2|E|

veV



HW 3.45 (Due April 18). Suppose an undirected graph G has no 4-cycles. Then m = |E| = O(n*/?) and
estimate the value of the constant implied by the big-Oh notation for large n = |V].

Definition 3.46. The complete graph on n vertices, denote K, is the graph containing all the (Z) possible
edges.

DO 3.47. If G has no triangle then m < n?/4. This is called the Mantel-Turan theorem.

“Graph” without adjective will always refer to undirected graphs; we may add the adjective “undirected”
for emphasis.

Definition 3.48. A graph is d-regular if every vertex has degree d. A graph is strongly regular with
parameters (n, k, A, ) if it has n vertices, is k-regular, and the number of common neighbours of = and y is
A for z ~ y and p for x ¢ y (where ~ denotes the adjacency relation).

Example 3.49. Two examples of strongly regular graphs are C5 with parameters (5,2,0, 1), and Petersen’s
graph with parameters (10, 3,0, 1). (Look up Petersen’s graph.)

The following problem was misstated in class.

HW 3.50. Let G be a group of order . Consider a graph with n = 2 vertices so that V = G x G and two
vertices (g1, h1) and (g2, he) are adjacent if g; = go or hy = hg or gflhl = g;lhg.
Prove that this graph is strongly regular and find its parameters.
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