
CMSC 36500 / MATH 37500 Algorithms in Finite Groups

Instructor: László Babai
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Spring 2017

4 Lecture 4 April 6, 2017 Problems due April 11

4.1 Homework review - permutation groups

We will discuss a few of the homework problems from last time:

Review 4.1. If G has a proper subgroup H of index k then it has a proper normal subgroup of index at
most k!

Proof. Let S = G/H be the set of right cosets of H (of which there are k), and let g ∈ G act on S by right
multiplication Hx 7→ Hxg. Let K denote the kernel of the associated homomorphism ϕ : G→ Sk. So K is
a normal subgroup of G. Since G/K ≤ Sk, we have |G : K| ≤ k!. It remains to show that K is a proper
subgroup of G. Indeed we show that K ≤ H. Reason: if g ∈ K then it fixes all right cosets; in particular it
fixes H itself, so Hg = H, meaning g ∈ H.

Definition 4.2 (Core of subgroup). Let H ≤ G. We define the core of H in G as the intersection of all
conjugates of H:

CoreG(H) =
⋂
g∈G

Hg (3)

where Hg = g−1Hg.

DO 4.4. Prove: CoreG(H) is the largest normal subgroup of G contained in H.

DO 4.5. Let H ≤ G and consider the action of G on G/H, the set of righ cosets of H, by right multiplication.
This action is a homomorphism ϕ : G→ Sym(G/H). Prove:

ker(ϕ) = CoreG(H).

Review 4.6. Prove: if G ≤ Sn is a p-group then the length of each orbit is a power of p. (Hint: orbit-
stabilizer lemma.)

Proof. It follows from the orbit-stabilizer lemma that |xG| always divides |G|.

Review 4.7. Find the Sylow p-subgroups of the symmetric group Sn.

Solution. Let P be such a Sylow p-subgroup. The order of P is the highest power of p dividing n!, so

|P | =
∞∑
i=1

⌊
n

pi

⌋
(8)

Let Ω be the permutation domain on which our symmetric group acts, so |Ω| = n. First we solve the
problem for n = pk. Build a p-ary tree T of depth k of which the leaves are the elements of Ω. Assign to each
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interior (non-leaf) node of T a cyclic permutation of its children. These cyclic permutations can be executed
independently, so we get a permutation group of order pN where N is the number of interior nodes, i.e.,

N = 1 + p+ · · ·+ pk−1 =
n

p
+
n

p2
+ · · ·+ 1,

so this group has the right order and is therefore a Sylow p-subgroup. Note that this means that every Sylow
p-subgroup acts on such a tree; in particular, for every i ≤ k they have blocks of imprimitivity of size pi.

Now to general n. By the exercise above, each orbit of P has length pi for some i. Write n in base p
as n =

∑
i aip

i where ai is a p-ary digit, i.e., 0 ≤ ai ≤ p− 1. So this is a sum of
∑

i ai powers of p. We claim
that P has

∑
i ai orbits, out of which ai have length pi.

Divide up Ω into subsets of p-power sizes such that ai subsets have size pi for every i. Consider the
direct product of the Sylow p-subgroups on these sets of size pi. Verify that this group has the right order;
therefore it is a Sylow p-subgroup of G.

DO 4.9. Suppose G ≤ Sn is a primitive p-group. Then n = p.

Proof. We know that n = pk because G is transitive. Since G is a p-group, there exists P ∈ Sylp(Sn) so that
G ≤ P . But G is imprimitive unless k = 1. The key observation here is that blocks of imprimitivity for a
group are also blocks of imprimitivity for any subgroup.

Definition 4.10 (Structure tree, structure forest). Let G ≤ Sym(Ω) be a transitive permutation group.
We build a tree of which Ω is the set of leaves, such that the G-action on Ω extends to the tree. If G is
primitive, we just add a root node and connect it to each element of Ω. If G is imprimitive, let {B1, . . . , Bk}
be a maximal system of imprimitivity, i.e., the blocks Bi are minimal blocks of imprimitivity. Let each Bi

correspond to a node vi in the tree; the set of children of vi will be Bi. Let Ω1 = {v1, . . . , vk}. It is clear that
the G-action extends to the set Ω1 so that the extension preserves the “parent” relation. Let G1 ≤ Sym(Ω1)
be the image of the G-action on G1. Now put a structure tree of G1 on top of the set Ω1. (End of inductive
definition.)

If G is intransitive, build a structure tree separately for each orbit. The set of these structure trees is
the structure forest.

DO 4.11. Let T be structure forest of G ≤ Sym(Ω) and let x be an interior node of (one of the trees in) T .
Then the action of Gx on the set of children of x is primitive.

So, in a way, primitive groups are the “building blocks” of all permutation groups. (The “glue” that
glues these building blocks together is very complicated, but by understanding the primitive groups in a
structure forest of a permutation group G we gain a lot of information about G itself.)

DO 4.12. Structure trees are not unique. For instance, the dihedral group D6 (of order 12) acting on the
six vertices of a hexagon has two structure trees.

DO 4.13. Let G ≤ Sym(Ω) be a transitive permutation group and x ∈ Ω. Prove: the structure trees of G
are in one-to-one correspondence with the maximal chains of subgroups connecting Gx to G. Such a chain
has the form Gx = H0 < H1 < · · · < Hk = G; maximality means Hi−1 is a maximal subgroup of Hi for each
i. The number k is the depth of the corresponding structure tree.

HW 4.14. (Due April 18) Find infinitely many transitive permutation groups G and two structure trees
of G of different depths. (Ideally, the depths should have very different orders of magintude.)

HW 4.15. (Due April 18) Let G ≤ Sn be a transitive group. (a) Prove: there are at most n− 1 maximal
systems of imprimitivity (the blocks are minimal). (b) Prove that the bound n− 1 is infinitely often tight.
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4.2 Homework review - digraphs

Definition 4.16. Let X = (V,E) be a digraph. A cut (A,B) is a partition of V into two non-empty parts
A,B, so A ∪B = V and A ∩B = ∅. E(A,B) = E ∩ (A×B) is the set of edges from A to B.

DO 4.17. A digraph X is not strongly connected if and only if there exists a cut A,B so that E(A,B) = ∅.

DO 4.18. If X is a digraph and (A,B) a cut then

|E(A,B)| − |E(B,A)| =
∑
v∈A

(deg+(v)− deg−(v)).

Review 4.19. If X is an eulerian digraph then all weak components of X are strong components.

Proof. We may assume without loss of generality (WLOG) that X is weakly connected. It follows that
for every cut (A,B) we have |E(A,B)| + |E(B,A)| > 0. Now by DO 4.18 we have |E(A,B)| = |E(B,A)|
for every cut (A,B), and therefore |E(A,B)| > 0 for all cuts. But this means X is strongly connected by
DO 4.17.

4.3 Linear algebra review

Definition 4.20. The transpose of a k × n matrix A = (aij) is the n× k matrix AT = (aji). A row vector
is a 1× n matrix; the transpose of a row vector is a column vector (n× 1 matrix). We shall think of Fn as
the set of n× 1 column vectors over the field F.

Review 4.21. Let f(t) = a0 + a1t+ · · ·+ ant
n be a polynomial over the field F with an 6= 0 (f has degree

n). We say that “all roots of f belong to F” if f can be factored as f(t) =
∏n

i=1(t−λi) where the λi are the
roots and they occur in this expression with multiplicity. Note that the condition always holds of F = C.

Review 4.22. A column vector x ∈ Fn is an eigenvector of the n × n matrix B over the field F if x 6= 0
and there exists λ ∈ F such that Bx = λx.

Review 4.23. If A is an n×n matrix over a field F then its characteristic polynomial is fA(t) = det(tI−A).
The roots of the characteristic polynomial are the eigenvalues of A. We say that “all eigenvalues of A belong
to F” if all roots of fA belong to F.

Definition 4.24. If A is an n×nmatrix then its trace is defined as the sum of the diagonal: Trace(A) =
∑
aii.

DO 4.25. If A is an n× n matrix over the field F and all eigenvalues of A belong to F then

Trace(A) =
n∑

i=1

λi.

Definition 4.26. The standard dot product of two real vectors x = (x1, . . . , xn)T ∈ Rn and y = (y1, . . . , yn)T ∈
Rn is x · y = xTy =

∑
xiyi. The norm of x is defined as ‖x‖ =

√
x · x. The vectors x and y are orthogonal

if x · y = 0. A list v1, . . . ,vk of vectors is an orthonormal system if vi · vj = δij where the Kronecker
symbol δij is the (i, j)-entry of the identity matrix. An orthonormal basis (ONB) of Rn is a basis that is
orthonormal. A unit vector is a vector of norm 1.

Theorem 4.27. (Spectral Theorem) Let B be an n×n symmetric real matrix. Then B has an orthonormal
eigenbasis (i.e., a basis of Rn consisting of eigenvectors of B). In particular, all eigenvalues of B are real.

It follows that the characteristic polynomial fB(t) = det(tI−B) can be written as a product
∏

i(t−λi)
where the λi are the eigenvalues of B.

3



4.4 Spectral graph theory

Definition 4.28. Recall that a walk of length k is a sequence v0, v1, . . . , vk of vertices such that vi−1 → vi
for all i (i.e., (vi−1, vi) ∈ E). A path is a walk with no repeated vertices. In an undirected graph a path
does not have an inherent orientation, so when we count paths, the path v0, v1, . . . , vk counts as the same
path as vk, vk−1, . . . , v0. But when counting walks, we take their orientation into account, even if the graph
is undirected.

(Some books and authors use the term “path” to mean what we call “walk.” Please stick with our
definition.)

Definition 4.29. A closed walk of length k is a walk of length k that starts and ends at the sme vertex
(v0 = vk). A cycle is a closed walk without repeated vertices (besides the start and end). When counting
closed walks, we take their start vertex into account; but when counting cycles, we don’t, so a cycle of length
k corresponds to k closed walks. Moreover, for undirected graphs, when counting cycles, we ignore their
orientation; but when counting closed cycles, we don’t.

Recall that by “graph” we mean “undirected graph.”
Note that this means that the sum of the eigenvalues of a graph is zero, since all diagonal entries are

zero.

Definition 4.30. The distance from vertex u to vertex v is

dist(u, v) = inf(length(P ))

where the infimum is taken over all walks P from u to v. This infimum is infinite if v is inaccessible from u.

DO 4.31. Show that in this definition we could have taken the infimum over all paths (as opposed to walks),
the result would not change.

Definition 4.32. The diameter of the graph X is

diam(X) = sup
x,y∈V

dist(x, y)

Definition 4.33. By eigenvalues of a graph we mean the eigenvalues of its adjacency matrix.

HW 4.34. The number of distinct eigenvalues of a connected graph X is at least 1 + diam(X)

In the following sequence of exercises, X will always be a graph. We will assume that the eigenvalues
of X are always given as λ1 ≥ λ2 ≥ · · · ≥ λn

DO 4.35. If X is regular of degree d then λ1 = d (that is, the greatest eigenvalue is d).

DO 4.36. If X is regular of degree d, then for all i, we have |λi| ≤ d

DO 4.37. For a regular graph X of degree d we have λ2 = d if and only if X is disconnected.

Definition 4.38. A graph X = (V,E) is bipartite if V can be legally coloured with two colours (adjacent
vertices always receive different colors).

DO 4.39. If X is bipartite (not necessarily regular) then for all i we have

λi = λn−i+1

CH 4.40. If X is connected and λn = −λ1 then X is bipartite.

HW 4.41. Find the eigenvalues (with multiplicity) and an eigenbasis for Kn (the complete graph with n
vertices) and Kn,n (the complete bipartite graph on (n, n) vertices (each part has n vertices)).
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