Algorithms in Finite Groups CMSC 36500 = Math 37500 Quiz - May 16, 2017

Name (print): _____

This quiz contributes 12.5% to your course grade.
Do not use book, notes, scrap paper. Use the space provided; you may continue on the back of each sheet. You can find some of the definitions on the last page.
Show all your work. If you are not sure of the meaning of a problem or the degree of detail required, ask the instructor.
The BONUS PROBLEMS are underrated, try the ordinary problems first.
 (7 points) Characterize the composition factors of finite solvable groups. (State the structure of the composition factors.) Do not prove.
2. (8 points) G acts on itself by conjugation. What is the kernel of this action? (Just name it, do not prove.)

3. (30 points) Prove: for $k \geq 2t+1$, the Johnson group $S_k^{(t)}$ is primitive.

4. (20 points) Prove: the Graph Isomorphism problem is Karp-reducible to the isomorphism problem for graphs of diameter 2. Your reduction should be very simple; simplicity counts. Describe the reduction and state what exactly we need to prove about your reduction; do not prove.

5. (30 points) Prove: Strongly regular graphs have ≤ 3 distinct eigenvalues.

6. (30 points) Let $N \triangleleft G$. Assume both N and G/N are nonabelian simple groups. Prove: N is a direct factor of G. In other words, there exists $L \leq G$ such that $G = N \times L$ (direct product). You may use a theorem stated but not proved in class. State the theorem.

7. (BONUS: 16 points) Let $n \geq 4$ be even. Prove: GL(n,2) has a subgroup isomorphic to the symmetric group S_{n+2} . [Originally assigned for $n \geq 2$ but it is false for n = 2.]

8. (BONUS: 18 points) Prove: a primitive permutation group has at most two minimal normal subgroups.

DEFINITIONS

The permutation group G is regular if it is transitive and $|G_x| = 1$ for $x \in \Omega$.

Let $H \leq G$. The *centralizer* of H in G consists of those elements of G that commute with every element of G.

The Johnson group $S_k^{(t)}$ is defined as the induced action of S_k on the t-subsets of [k]. So

$$S_k \cong S_k^{(t)} \le S_{\binom{k}{t}}.$$

The distance of vertices u and v in a graph is the length of the shortest $u-\ldots-v$ path. The diameter of a finite graph is the largest distance among pairs of vertices.

By eigenvalues of a graph we mean the eigenvalues of its adjacency matrix.

GL(n,q) denotes the group of invertible $n \times n$ matrices over the field \mathbb{F}_q where q is a prime power.

A graph is strongly regular (SR) with parameters (n, k, λ, μ) if it has n vertices, it is regular of degree k, evry pair of adjacent vertices has λ common

neighbors, and every pair of non-adjacent vertices has μ common neighbors. For instance, the pentagon is SR with parameters (5,2,0,1).