Graph Isomorphism course, Spring 2017
Instructor: Laszl6 Babai
Notes by Angela Wu and instructor
Tuesday, May 2, 2017

11 Day 11, TWk6

11.1 Stringlso, definition

We define STRING ISOMORPHISM (STRINGISO), which is intuitively the problem of deciding whether
two strings are anagrams under a given group action.

First some notation. We denote by X a finite alphabet and by €2 the set of ‘positions’ in a
“string.” A string z € £ is a function z : Q@ — ¥. For ¢ € Sym(Q) and = € £, o acts on z
in a natural way. We write 27 to represent the string (z7); = z,,-1. This gives an induced action
Sym(Q) — Sym(X%).

Let M C Sym(f2). We say that two strings x,y € Q> are M-isomorphic (z =), y) if

(o€ M)(27 =y).
STRING ISOMORPHISM (STRINGISO)

Input: strings x,y : Q@ — ¥ and a group G < Sym(Q2) (given by a list of generators)
Question: Is z =g y?

11.2 Decision problems, Karp-reducibility

We use the word “classical string” to mean a string where the set of positions is [n] (where n is
the length of the string). For a language L C A* (all classical strings over the alphabet A), the
decision problem associated with L is the membership problem: given x € A* is x € L?

Consider languages L; € AY (i —1,2). A Karp reduction from L; to Ls, is a function
f Al — A such that

(1) f is polynomial-time computable, and

(2) Vxe AY)(z € L1 < f(z) € Lo).
We say that L is Karp-reducible to Lo, denoted L1 xgagrp L2, if such an f exists.
Theorem 11.1 (Cook-Levin, 1972). Every language in NP is Karp-reducible to 3-SAT.

11.3 GI is Karp-reducible to Stringlso
Proposition 11.2 (Luks). GI okarp STRINGISO.!

We describe the Karp reduction.

Denote by code(X) the (0, 1)-string of length (%) encoding the adjacency relation of X. (Q =
([Z]) and X = {0,1}.) The group G for STRINGISO is 51(12), the induced action of Sy, on the (})
pairs. (So S,, = st < S())

n
2

View GI and STRINGISO as languages.

DO 11.3. Let X,Y be graphs on n vertices. Then X =Y if and only if code(X) =) code(Y).
Now the Karp-reduction is the function
F(X,Y) = (code(X), code(Y), S?)

where n is the number of vertices of X and Y.
To be more precise, the Karp-reduction is supposed to also be defined for pairs (X, Y") of graphs
which do not have the same number of vertices. Such pairs of course are never isomorphic.

DO 11.4. Extend the definition of f to such pairs of graphs.

11.4 Luks’s theorem
Theorem 11.5 (Luks (1980)). GI of graphs of bounded degree can be tested in polynomial time.

A special case is when the degrees of this graph < 3. This is derived from STRINGISO for
2-groups.

HW 11.6 (Tutte (1947)). Let X be a connected graph of degree < 3. Let e be an edge in X.
Show that (Aut(X)) is a 2-group.

For the special case of p-groups G, STRINGISO under G is solvable in polynomial time. We
spend the rest of the lecture giving a full proof of this result.

Theorem 11.7 (Luks). SI is solvable in polynomial time for p-groups G.
» Notation.
Definition 11.8. For graphs X, Y, we denote
ISO(X,Y)={f: X =Y | fisa graph isomorphism }.
Definition 11.9. For strings =,y € ¥ and M C Sym(Q), we denote
ISOp(z,y) :=={ce M | 27 =y}

DO 11.10. For graphs X, Y, the set ISO(X,Y) is either empty or a right coset of Aut(X). Namely,
if o € ISO(X,Y), then ISO(X,Y) = Aut(X) - 0.

0 T ¥cy

DO 11.11. For strings z,y € £ and a group G' < Sym(Q2) we have ISO¢(z,y) =)
Autg(x)o = =gy

where o is any element in ISO¢g(z,y).

DO 11.12. Let G < Sym(Q), o € Sym(Q), and z,y € £°. Then,
ISOGa(%?J) = {T cGo:2" = y} — ISOG(&U, yafl)o_.

11.5 Luks’s group theoretic Divide-and-Conquer method for SI

Luks’s method basically combines two tricks. We call them (1) the “Chain Rule” (window-by-
window processing, see velow), and “descent” (to a subgroup).

11.5.1 Descent

(2) Descent: Let H < G. Let R be a set of right coset representatives of H in G, so that G = |J Ha.
aER
Then,

ISOg(z,y) = U ISOga(z,).
a€R

Thus, ISO¢ reduces to |G : H| instances of ISOgy.

11.5.2 Chain Rule

Let W C Q (the “window”). Define the “partial string” "' (what we “see” through the window)

by

% otherwise

(where * is a special symbol, not in the alphabet X).
Assume now that W is invariant under M C Sym(f2). Denote by

ISOY (z,7) :== ISONM (=", y™). (1)

Intuitively, we restrict to W and solve on this smaller set. Let us write ISOyy,, (z,y) to denote
the set ISOyy),,, (x|w, y|w) (everything is restricted to the window). While computing ISO y,,, (2,)
(by a recursive call to the smaller domain W), we need to keep track of the “tails” (action outside
the window) of the group elements computed so we shall be able to interpret the result as a subset
of Sym(€2).

Let now M be a group: M = G < Sym(2). Consider the projection 7 : G — G|y . This in
particular maps ISOY (z,%) onto ISOgy,, (7,9). Once we have found this image (by our recursive
call), we need to lift this coset back to G.

Lifting the generators of Autg,,, (z) along with a coset representative is not sufficient. We also
need to find Ker(7) (see the following DO exercise).

DO 11.13. If ¢ : G — H = (t1,...,tx), let s1,...,8; € G be such that ¢(s;) = t;. Then,
G = (s1,...,s,, Ker(¢)).

Now Ker(m) = G(w), the pointwise stabilizer of the window.

DO 11.14. Given G < Sym(Q2) (as always, by a list of generators), and W C €, compute the
pointwise stabilizer Gy in polynomial time.

» Proceeding window-by-window
(1) Chain Rule: Let G < Sym(2) and ¢ € Sym(£2). Write Q = Q; U... U Qy as a disjoint union of

subsets invariant under G and o (i.e., invariant under the group (G, o), i.e., each Q; is a union of
orbits of the group (G, o)).

We compute ISOg, (2, y) progressing sequentially through the windows.
Procedure Chain Rule
Input: z,y,G,0,Q=Q; U... U

Initialize M + Go
Fori=1...k
Q;
M IS0y (z,y)
Return M

Note the following loop invariant: M is either empty or a subcoset of Go. (True at the beginning
and remains true under each iteration of the “for” loop.)

DO 11.15. Prove: the procedure outputs ISOg(x,y).

11.6 Divide-and-Conquer: combining Descent and the Chain Rule

We describe Luks’s strategy for the SI problem.

If G is intransitive, process orbit by orbit via the Chain rule.

If G is transitive but imprimitive, let B = {By,..., Bx} be a minimal system of imprimitivity
(a G-invariant partition into maximal blocks).

So, 2 = | | B; and the B; are maximal blocks. We have a G-action G ~ B (the group G permutes
the blocks). This means an action ¢ : G — Si. Let G = Img(¢) and K = Ker(¢).

DO 11.16. Prove G is a primitive group (because the blocks are maximal).

Having run out of simple ways to “divide,” the naive implementation of Luks’s method is to do
exhaustive search on G, i.e., to descend to the kernel K.
We shall see that in important cases this already yields a polynomial-time algorithm.

11.7 Complexity estimation
11.7.1 Chain Rule: ultra-efficient recurrence

Let f(n) denote the cost (number of group operations performed) on instances with domain size n
in the worst case. We assume we have pruned the set of generators, so GG is given by a list of < 2n
generators.

Write |Q;| = n;. We notice that f(n) < > f(n;) + n® where we write n¢ for the (polynomial-
time) cost of the overhead (bookkeeping, and putting together the pieces received from the recursive
calls — all that is polynomial-time). Then, f(n) < n¢tl,

Justification: Evaluation of recurrences by the method of reverse inequalities.

Suppose that g(n) > f(n) for n < ng and g(n) > > g(n;) + n° for n > ny.

Then, by induction, f(n) < g(n).

So all we need to do is guess a function g and a threshold ng such that g satisfies the reverse
inequality above the threshold. Guess g(n) := nt! and ng = 1.

11.7.2 Analyzing Luks’s strategy for SI

The chain rule very efficiently reduces the problem to transitive G. We analyze the case when G
is transitive. Recall that k£ denotes the number of blocks in our minimal system of imprimitivity.
We reduce to K (the kernel of the action on the set of blocks). Each block is K-invariant, so we
proceed block by block using the Chain Rule. The cost of the second phase is < k- f(n/k), and we
need to repeat this for every coset of K in G (cost of descent), so our overall estimate is

f(n) <k-f(n/k)-|G: K|, where |G: K| =|G|.
Let us now consider the case when G is a p-group.
Lemma 11.17. If G < S, is a primitive p-group then |G| =n = p.
To prove this, we make some observations.
DO 11.18. If G is a transitive p-group then n = p’ for some ¢. (Hint: orbit-stabilizer lemma.)

So G < P for some P € Syl ,(S,¢). Therefore any system of imprimitivity of P is also a system
of imprimitivity of G.

DO 11.19. Infer the Lemma from these observations and the structure of the Sylow p-subgroups
of S .
P

So if G is a p-group then we have k = |C~? | = p and therefore our recurrence (disregarding the

overhead) becomes f(p’) <p- f(p™") -p=p%- f(p'1). Thus, f(p’) = O(®*), so f(n) = O(n?).
We have thus completed the proof of Theorem 11.7 which we restate here.

Theorem 11.20 (Luks). STRINGISO for p-groups G can be solved in polynomial time. (The poly-
nomial does not depend on the prime p.)

The following group-theoretic result, proved independently and simultaneously by T.R. Wolf
and the instructor’s student Péter P. Palfy (nicknamed p?), allows us to extend the theorem to all
solvable groups.

Theorem 11.21 (Palfy-Wolf, 1982). If G < S, is solvable and primitive, then |G| < n®, where
C =3.24399.. ..

HW 11.22. Combine Luks’s method with the Pélfy—Wolf Theorem to show that STRINGISO for
solvable G can be solved in polynomial time.

	Day 11, TWk6
	StringIso, definition
	Decision problems, Karp-reducibility
	GI is Karp-reducible to StringIso
	Luks's theorem
	Luks's group theoretic Divide-and-Conquer method for SI
	Descent
	Chain Rule

	Divide-and-Conquer: combining Descent and the Chain Rule
	Complexity estimation
	Chain Rule: ultra-efficient recurrence
	Analyzing Luks's strategy for SI

