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12 Day 12, ThWk6

Recall our discussion of StringIso from last class. We consider strings x : Ω → Σ, which are
functions from Ω (the set of positions) to Σ (the alphabet).

String Isomorphism (StringIso)
Input: Strings x, y ∈ ΣΩ and a group G ≤ Sym(Ω). (G is given by a list of generators.)
Decision problem: Does there exist σ ∈ G such that xσ = y.
Computation problem: Compute ISOG(x, y) := {σ ∈ G : xσ = y}.
Recall that ISOG(x, y) is either the empty set or a coset AutG(x)σ. The coset is represented by

an isomorphism σ ∈ G (so xσ = y) and a list of generators of AutG(x).

12.1 Representation issues in Luks’s Algorithm

Descent
If H ≤ G, then G-isomorphism reduces to |G : H| instances of H-isomorphism, using the

following equation. Write G =
⊔
a∈R

Ha as the disjoint union of cosets of H, where R is a set of

coset representatives.

ISOG(x, y) =
⊔
a∈R

ISOHa(x, y) =
⊔
a∈R

ISOH(x, ya
−1

) · a

The LHS is the desired output of this step. While it is a disjoint union of represented cosets
in H, the LHS cannot simply be represented by taking the union of the generators and coset
representative that represent each coset. Recall that the membership problem for permutation
groups can be solved in polynomial time.

HW 12.1 (Combining subcosets to a coset). LetH ≤ G andR be a set of right coset representatives
of H in G. For each a ∈ R let either Ka ≤ H or Ka = ∅. Assume the union

⊔
a∈RKaa is a subcoset

of G, i.e.,
⊔
a∈RKaa = Lb for some L ≤ G and b ∈ G. Given R and the Ka (a ∈ R), compute

the coset Lb in polynomial time. (Note: complexity is always relative to the size of the input, so
“polynomial time” in this problem means time poly(n, |R|).

Theorem 12.2 (Pálfy-Wolf (1982)). If G ≤ Sn is primitive and solvable, then |G| < nC , for
C = 3.24399 . . ..

Theorem 12.3 (Luks (1980) + Pálfy-Wolf (1982)). If G is solvable, then GI can be solved in
polynomial time.

Remark 12.4. Let C be a class of groups closed under (1) subgroups and (2) quotients. If G ∈ C,
then all groups encountered by the Luks reduction also belongs to C.
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12.2 Examples of large primitive subgroups of Sn

The giants are Sn and An.

The Johnson groups1 are S
(t)
k and A

(t)
k , the induced Sk and Ak action on t-tuples

(
[n]
t

)
in [n].

The order is
|S(t)
k | = k! ≈ exp(k) ≈ exp(n1/t).

(Here the “approximate equality” sign is used informally; lower-order error terms occur in the
exponents.)

Let n = qd. The affine linear group AGL(d, q) := {x 7→ Ax + b : A ∈ GL(d, q), b ∈ Fdq} acts

on Fdq as affine linear transformations. The order is |AGL(d, q)| = Θ(qd
2+d) = Θ(nd+1).

(Recall the Θ notation: if an, bn are sequences of positive numbers then we write an = Θ(bn) if
an = O(bn) and bn = O(an), i.e., there exist positive constants c, C such that for all sufficiently
large n we have can ≤ bn ≤ Can.)

Theorem 12.5 (CFSG). Classification of finite simple groups, a sketch.

• Cyclic groups Zp.

• Alternating groups An, for n ≥ 5.

• Lie-type simple groups. These are matrix groups over finite fields. They split into classical
groups and exceptional groups.

– Classical groups: linear, symplectic, orthogonal (3 types), and unitary groups. These are
all parametrized by (d, q).

– Exceptional groups: about 10 classes. These are parametrized by q (so d is fixed).

• Sporadic groups. These have bounded order |G| ≤ C.

12.3 Babai-Cameron-Pálfy

We discuss a bound on the order of primitive permutation groups in terms of the degree of the
largest alternating section, made precise below.

Definition 12.6. H is a section of G (or H is involved in G) if H is a quotient of a subgroup of
G.

Theorem 12.7 (Babai-Cameron-Pálfy). Fix a constant C. Let G ≤ Sn. If G is primitive and
no composition factor of G is either Ak for k > C or a classical group of dimension > C, then
|G| < nc, where c depends on C.

The conditions of the Babai-Cameron-Pálfy theorem are equivalent to the condition that G ≤ Sn
does not involve Ak for k > C. This holds because Ak ≤ SL(k, q). A similar situation holds for
other classical groups under a multiplicative factor to C.

Definition 12.8. We say that the thickness of G, denoted by Θ(G), is the largest k such that
Ak is involved in G.

1This terminology is not standard, but is used by the instructor as they describe the automorphism groups of the
Johnson graphs.
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The following stronger version of BCP was proved by Pyber and Liebeck–Shalev.

Theorem 12.9 (Strong version of BCP). If G ≤ Sn is primitive, then |G| < nO(Θ(G)).

Corollary 12.10. StringIso can be solved in time nO(Θ(G)).

12.4 Cook reduction

Let L1 and L2 be languages, Li ⊆ ∆∗i . A Cook reduction of L1 to L2 is a polynomial-time
algorithm that takes as input a string x ∈ ∆∗1 and decides membership in L1 by, time to time,
querying an “oracle” for membership in L2.

The oracle is a black box that takes an input and produces an output at no cost. So a
Cook reduction will, time to time, compute strings yi ∈ ∆∗2 and “magically” receive an answer to

the question yi
?
∈ L2; this answer can then be used in the rest of the computation, including in

computing additional srings to query.
We say that L1 is Cook reducible to L2 (notation: L1∝Cook L2) if a Cook reduction of L1 to

L2 exists.

DO 12.11. If L1∝Cook L2 and L2 ∈P (membership in L2 can be decided in polynomial time) then
L1 ∈P. (Hint: simulate the oracle by a subroutine that tests membership in L2.)

DO 12.12. If L1∝Cook L2 and L2 ∈NP∩ coNP (membership in L2 is “well characterized”) then
L1 ∈NP∩ coNP.

While Karp reducibility only applies to decision problems (where the output is binary, such
as yes/no, true/false, 1/0, member/not member, etc.), the concept of Cook reducibility applies to
computation problems (where the output is an arbitrary string). Below we give a more accurate
definition of Cook reduction, in the multitape Turing machine model.

Definition 12.13. Let ∆i,Φi be alphabets for i = 1, 2. Let gi : ∆∗i → Φ∗i . A Cook-reduction of
g1 to g2 is a polynomial-time oracle Turing machine which under a g2-oracle computes g1.

We say that the function g1 is Cook-reducible to g2 if there exists a Cook reduction from g1

to g2.

Cook reduction of languages is a special case: take gi to be the charcateristic function (mem-
bership indicator) of Li.

We explain the concept of an oracle Turing machine.
The machine has a read-only input tape and a forward-only output tape; and it has a fixed

number of read-write worktapes. One of the worktapes is designated the “query tape,” another
the “oracle tape.” A subset of states of the finite control is designated “query states.” When the
machine enters a query state, the oracle evaluates the content of the query tape, t, and (magically)
prints the value g2(t) on the “oracle tape” (erasing its previous content).

Note that part of the requirement is that the outputs to our queries should never be too long,
they all must be of length, polynomially bounded in the length of the original input.

If we wanted to use a Cook reduction to actually compute g1, we would need to replace the
oracle calls by calls to a subroutine that computes g2.

DO 12.14. Isomorphism of trivalent graphs ∝Cook Isomorphism of connected trivalent graphs.

If k is the number of connected components, then ≤
(
k+1

2

)
oracle calls are required.
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12.5 Trivalent graph isomorphism

Theorem 12.15 (Luks). Trivalent graph isomorphism is computable in polynomial time.

We make some preliminary observations.

HW 12.16 (Individualizing an edge). “Isomorphism of connected trivalent graphs” ∝Cook “Iso-
morphism of connected trivalent graphs with one special edge.”

HW 12.17. GraphIso ∝Karp Connected GraphIso.

HW 12.18. GraphIso ∝Karp Bipartite GraphIso.
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