Graph Isomorphism course, Spring 2017

Instructor: László Babai Notes by Angela Wu and the instructor Tuesday, May 16, 2017

15 Day 15, TuWk8

15.1 "Large" permutation groups

Recall that Soc(G) is defined to be the product of minimal normal subgroups. Recall [Cameron & CFSG, as refined by Maróti]: If $G \leq S_n$, G is primitive, $|G| > n^{1+\log_2 n}$, and $n \geq 25$, then $n = {m \choose t}^{\ell}$ for some m, t, ℓ and

- If $\ell = 1$, then G is a Johnson group, $G = S_m^{(t)}$ or $A_m^{(t)}$.
- In general, $Soc(G) = (A_m^{(t)})^{\ell} = A_m^{(t)} \times \cdots \times A_m^{(t)}$, and $(A_m^{(t)})^{\ell} \leq G \leq S_m^{(t)} \wr S_{\ell}$. So, G acts on ordered ℓ -tuples of t-subsets of [m].

We discuss how the GI algorithm addresses the two cases separately below.

15.1.1 $\ell \geq 2$: Luks-reduction works

We consider the case $\ell \geq 2$, where the conclusion will be that Luks-reduction accomplishes what we want.

DO 15.1. If $\ell \geq 2$, then Soc(G) acts imprimitively on $\binom{[m]}{t}^{\ell}$.

Consider $\varphi: G \to S_{\ell}$, with transitive image. Note that $Soc(G) \leq Ker \varphi$.

Lemma 15.2. If $m > (\log_2 n)^2$, then $|G : \operatorname{Ker} \varphi| \le n$.

15.1.2 $\ell = 1$: difficult case

In this case, a large primitive group G is $G = S_m^{(t)}$ or $G = A_m^{(t)}$. This is the case where Luks's algorithm gets stuck.

If G is imprimitive and \widetilde{G} the image of its action on a minimal system of imprimitivity (so \widetilde{G} permutes the blocks), then the number of blocks is $\binom{m}{t}$ and $\widetilde{G} = S_m^{(t)}$ or $A_m^{(t)}$ (a Johnson group) acting on the blocks. Since $S_m^{(t)} \cong S_m$ and $A_m^{(t)} \cong A_m$, we infer a G-action on a set Γ , with $|\Gamma| = m$, as a giant. We refer to Γ as the "ideal set" while Ω (the set of positions) is the "real world." We have $|\Gamma| \leq |\Omega|$.

Let x be the input string. Consider $\operatorname{Aut}_G(x) \leq G \xrightarrow{\varphi} \operatorname{giant}(\Gamma)$. Our goal is to (1) decide whether $\varphi(\operatorname{Aut}(G))$ is almost giant (testable by efficient Luks reduction) or (2) encase $\varphi(\operatorname{Aut}_G(x)) \leq M < \operatorname{Sym}(\Gamma) = S_m$. Denote $n = |\Omega|$ and $m = |\Gamma|$.

We want |M| to be much smaller than $\operatorname{Sym}(\Gamma)$, specifically, we want $|S_m:M|>c^m$ for some constant c>1. So, this can only repeat $O(\log m)$ times.

Let $H := \operatorname{Aut}_G(x)$. Consider $\varphi : H \to H \leq S_m$. An intermediate goal is to find an H-invariant structure on Γ . Then, use this to find a good canonical partition of Γ with no dominant color

 $(\geq 90\%)$ or to find an equipartition of the dominant color. This is an unattainable goal – there exist counterexamples: the Johnson graphs (see below).

However, it is possible to either find a canonical coloring of Γ with no dominant color, or find a canonical equipartition of the dominant color, or find a canonical Johnson graph on a dominant color.

Definition 15.3 (Johnson graphs). We define the **Johnson graph** J(k,t), for $k \geq 2t+1$. The graph has $\binom{k}{t}$ vertices which we label as $\{v_T : T \subseteq [k], |T| = t\}$. Two vertices are adjacent, $v_T \sim v_S$, exactly if $|T \setminus S| = 1$.

15.2 Post-quiz homework assignment

DO 15.4. The quiz has been posted. Work out the quiz problems without time pressure.

HW 15.5 (Last bonus question on quiz). If $G \leq S_n$ is primitive, then G has ≤ 2 minimal normal subgroups.

HW 15.6. Aut $(J(m,t)) = S_m^{(t)}$. Note: \geq is trivial.

In your solution to problem 15.6 you may use the following results.

Theorem 15.7 (Erdős-Ko-Rado Theorem). If $\mathcal{F} \subseteq {[k] \choose t}$ for $k \geq 2t+1$ is an intersecting family, i.e., $(\forall A, B \in \mathcal{F})(|A \cap B| \geq 1)$, then $|\mathcal{F}| \leq {k-1 \choose t-1}$.

Remark 15.8. Note that this bound is tight, as demonstrated by picking an element $x \in [k]$ and taking all t-subsets of [k] containing x.

Theorem 15.9 (Hilton-Milner Theorem). The only extremal systems in the EKR Theorem are the systems described in Remark 15.8.